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Abstract

We investigate clique trees of infinite locally finite chordal graphs. Our
main contribution is a bijection between the set of clique trees and the
product of local finite families of finite trees. Even more, the edges of a
clique tree are in bijection with the edges of the corresponding collection
of finite trees. This allows us to enumerate the clique trees of a chordal
graph and extend various classic characterisations of clique trees to the
infinite setting.
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1 Introduction

A graph is chordal, if every cycle of length greater than three contains a chord,
i.e., an edge connecting two non-consecutive vertices along the cycle. Chordal
graphs are a classic object in graph theory and computer science [3]. In the finite
case they are known to be equivalent to the class of graphs representable as a
family of subtrees of a tree [7]. A finite and connected chordal graph has natural
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representations of this form: so-called clique trees, which form a subclass of the
spanning trees of its clique graph.

This work investigates clique trees of infinite locally finite chordal graphs.
We show their existence and extend various classic characterisations of clique
trees from the finite to the infinite case.

Our core contribution is a local partition of the edge set of the clique graph
and a corresponding set of constraints, one for each element of the partition,
which a clique tree has to fulfil. This characterises the clique trees by a bijection
with the product of the local choices. See Section 3.3. Each constraint only
depends on the edges within its partition element, whence the constraints are
satisfied or violated independently from each other. Section 3.6 presents a purely
combinatorial and local construction of a clique tree by fixing a satisfying subset
of the edges in each element of the partition.

In the case of a finite chordal graph, our main result gives rise to an enumer-
ation of the clique trees, see Section 3.7. It is equivalent to a prior enumeration
via a local partitioning of constraints by Ho and Lee [9]. While their partition is
indexed by the minimal vertex separators of the chordal graph, ours is indexed
by certain families of cliques. We recover the minimal vertex separators as inter-
sections of the cliques within those families, thus demonstrating the equivalence
of the two approaches. Section 3.8 shows this bijection. As a corollary, we iden-
tify the reduced clique graph with the union of all clique trees, extending a
result in [6] to infinite graphs.

Classic characterisations [3] of clique trees of finite chordal graphs relate
various properties of a clique tree to minimal vertex separators of the original
graph, or demand maximality with respect to particular edge weights in the
clique graph, or describe properties of paths in the tree, among others. They
contain obstacles to an immediate extension to the infinite case, though. Either
their range is unbounded, or the conditions overlap, or the proof depends on
the finite setting or they make no sense at all in an infinite setting (such as
maximality with respect to edge weights). In Section 4, we extend several classic
characterisations or sensible versions thereof to the infinite case.

2 Notation and basics

2.1 Graphs

We only consider locally finite multigraphs, that is, all vertex degrees are finite.
We say graph, if we exclude multiple edges. Let G be a multigraph with vertex
set V . For W ⊆ V , denote by G[W ] the submultigraph of G induced by W . For
an equivalence relation ∼ on V , denote by G/ ∼ the multigraph resulting from
contracting each equivalence class of ∼ to a single vertex. It may contain loops
and multiple edges, even if G does not. For W ⊆ V , let G/W be the multigraph
with only W contracted to a single vertex, and, for W1, . . . ,Wk disjoint subsets
of V , let G/{W1, . . . ,Wk} be the multigraph resulting from G by contracting
each Wi to a single vertex. If we speak of the graph G/ ∼ (or one of the above
variants), then we mean the graph underlying the multigraph G/ ∼, including
possible loops.

A multigraph is complete, if all vertices are adjacent to each other. We say
that W ⊆ V is complete, if G[W ] is complete. A clique is a maximal complete
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subset of V . Denote by CG and KG the set of all complete vertex subsets and
cliques of G respectively. The clique graph KG of G has vertex set KG and an
edge for every pair of cliques with non-empty intersection. As G is locally finite,
all its cliques are finite and every vertex is contained in only a finite number of
cliques, whence the clique graph KG is locally finite, too.

A tree T is a connected and acyclic graph. A subgraph of G is spanning, if
it has the same vertex set as G. Denote by TG the set of spanning trees of G.

2.2 The lattice of clique families

For C ∈ CG, the clique family generated by C is

F (C) := {K ∈ KG | C ⊆ K} .

Clique families are always non-empty. Generation is contravariant, as

C ⊆ C ′ ⇒ F (C ′) ⊆ F (C) . (1)

The largest clique family is F (∅) = KG. It is infinite, if and only if G is infinite.
In this case, it is the only infinite clique family. For v ∈ G, we abbreviate F ({v})
to F (v). These are the building blocks of all finite clique families:

F (C) =
⋂
v∈C

F (v) . (2)

Let F be a clique family. Every C ∈ CG with F (C) = F is a generator of F .
There is a maximal generator of F with respect to set inclusion:

C(F ) :=
⋂

K∈F
K =

⋃
F (C)=F

C . (3)

In particular, we have
F (C(F )) = F . (4)

It is also immediate that the intersection of two clique families F1 and F2 is
again a clique family, more precisely

F1 ∩ F2 = F (C(F1) ∪ C(F2)). (5)

Example 2.1. Let G := ({v1, v2, v3, v4}, {{v1, v2}, {v2, v3}, {v1, v3}, {v3, v4}}).
The cliques are K1 := {v1, v2, v3} and K2 := {v3, v4}. The clique families, their
generators and maximal generators are:

F generators of F C(F )
{K1,K2} = KG ∅, {v3} = K1 ∩K2 {v3}

{K1} {v1}, {v2}, {v1, v2}, {v2, v3}, {v1, v3},K1 K1

{K2} {v4},K2 K2

The sets of generators of two clique families coincide, if and only if the clique
families are equal, and are disjoint otherwise. This follows from the equivalence
relation ∼ on CG given by C1 ∼ C2 ⇔ F (C1) = F (C2). An equivalence class of
∼ corresponds to the set of generators of a clique family.
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Proposition 2.2. Choose distinct K1,K2 ∈ KG. There is an edge K1K2 ∈ KG,
if and only if ∅ 6= K1 ∩K2 = C(F (K1 ∩K2)).

Proof. We have an edge K1K2 ∈ KG, if and only if K1 ∩K2 6= ∅. Thus, F :=
F (K1 ∩K2) is finite and, by (3), we have

∅ 6= K1 ∩K2 ⊆ C(F ) =
⋂

K∈F
K ⊆ K1 ∩K2 .

Let FG be the set of clique families of G. The clique families FG form a
lattice with respect to set inclusion. Equation (2) implies that all chains in the
lattice are finite. We use this fact to reason inductively over this lattice.

3 Infinite clique trees

3.1 Chordal graphs and subtree representations

Our main reference for basic facts about chordal graphs is [3]. A chordal graph
contains no induced cycle of length greater than 3. In other words, every induced
closed path of length greater than 3 has a chord, an edge connecting two non-
consecutive vertices of the cycle. Throughout this work, we assume that chordal
graphs are connected, locally finite and do not contain loops.

Let T be a tree and denote by T the family of subtrees of T . A function
t : V → T is a subtree representation of G on T , if v1v2 ∈ G⇔ t(v1)∩ t(v2) 6= ∅.
A finite graph is chordal, if and only if it has a subtree representation on some
tree [7]. This remains true for many infinite graphs, but there are examples of
countable and non-locally finite chordal graphs which do not admit a subtree
representation [8].

Clique trees are subtree representations on combinatorial structures asso-
ciated with the chordal graph. The existence of clique trees for finite chordal
graphs is a classic result [7].

Definition 3.1. Let G be a chordal graph. A spanning tree T ∈ TKG
is a clique

tree of G, if
∀ v ∈ V : T [F (v)] is a tree. (6)

A clique tree T represents G via the subtree map v 7→ T [F (v)]. The set of
clique trees CTG of G is the set of spanning trees T ∈ TKG

where T satisfies (6).
The following sections show not only the existence of clique trees of infi-

nite chordal graphs, but a way of constructing them from independent local
pieces. The recursive construction in [7] depends on the finiteness of the graph
to terminate and does not give any indication of how to obtain an independent
construction for non-adjacent parts of the chordal graph, a natural goal given
the tree-like structure of chordal graphs.

3.2 Existence of clique trees

A first existence result stems from an implicit construction by a limiting proce-
dure. Explicit local constructions follow in Section 3.6.

Theorem 3.2. Every infinite, locally finite chordal graph has a clique tree.
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Proof. We use a compactness argument, which is a standard approach in infinite
graph theory (c.f. [4, Chapter 8.1]). Arguments of this type are often useful to
obtain a result for infinite graphs from its finite counterpart.

Let G be the chordal graph. Let (vn)n∈N be an enumeration of the vertices
of G such that vn is connected to at least one vi with i < n. For n ∈ N, let Vn :=
{v1, . . . , vn} and denote by Gn the subgraph of G induced by

⋃
v∈Vn

⋃
K∈F (v) K,

i.e., it contains all cliques containing at least one vertex in Vn. The graph Gn is
connected because G[Vn] is connected and every other vertex of Gn is connected
to some vertex in Vn. It is chordal, because it is an induced subgraph of a chordal
graph.

For v ∈ Vn, F (v) is a clique family of Gn, since Gn contains all vertices in
cliques containing v. For n ∈ N, let Sn be a clique tree of Gn. Because also
KGn

=
⋃

v∈Vn
F (v) holds, we may interpret Sn as a subtree Tn of KG.

Finally, define a subgraph T of KG as follows. By the local finiteness of
G and thus KG, there is an infinite subsequence (T 1

n)n∈N of (Tn)n∈N of trees
which contain the same edges of KG[F (v1)]. Add those edges to T . Next, choose
an infinite sub-subsequence (T 2

n)n∈N of (T 1
n)n∈N such that all elements of the

sequence (T 2
n)n∈N contain the same edges of KG[F (v2)]. Proceed inductively.

By construction, T [F (v)] is a tree, for each v ∈ V . We verify that T is a tree,
too. The trees corresponding to v and w overlap, if and only if F (v)∩F (w) 6= ∅,
equivalent to vw ∈ G. Hence T is connected because G was assumed to be so. If
T contains a cycle C, then it lies in KGm

, for some m ∈ N. Hence, C is a cycle
in the tree Tm

1 [KGm
] = Sm[KGm

], a contradiction.

3.3 Local characterisation via clique families

We turn to a result telling us how to construct clique trees of locally finite
graphs from small local pieces. The parts in which those pieces live are defined
in terms of the clique families introduced earlier.

For F ∈ FG, let ΓF be the subgraph of KG[F ] with vertex set F and an
edge K1K2 ∈ ΓF , if F (K1 ∩K2) ( F , equivalent to K1∩K2 ) C(F ) by Propo-
sition 2.2. Intuitively, the graph ΓF connects cliques in F whose intersection is
”larger than necessary”, i.e., their intersection contains a vertex which is not
contained in every clique in F . Finally, let ∼F be the equivalence relation whose
classes are the connected components of ΓF , and let [K]∼F

be the equivalence
class of K with respect to ∼F . This permits to characterise a clique tree in a
finer-grained manner than (6).

Theorem 3.3. Let G be a chordal graph. A spanning subgraph T of KG is
a clique tree of G, if and only if it satisfies one of the following equivalent
conditions:

∀F ∈ FG : T [F ] is a tree, (7a)

∀F ∈ FG : T [F ]/ ∼F without loops is a tree. (7b)

Note that, only (7a) says directly that T [KG] = T is a tree. In (7b), this fact
is not so obvious, but follows from an inductive bottom-up construction. The
big advantage of (7b) is that one can compose a clique tree from trees on smaller
parts of the clique graph. In Section 3.6, we see that these parts don’t overlap,
thus showing that we can pick the trees in (7b) independently. Consequently,
we construct parts of a clique tree locally without knowing the global structure.
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Before we give a proof of Theorem 3.3 in Section 3.5, we need to formulate
and prove some auxiliary results in Section 3.4.

3.4 Combining trees

Lemma 3.4. Let G be a finite graph with vertex set V . Let V1, V2, . . . , Vk be
disjoint subsets of V . Every choice of two of the following statements implies
the third one:

G is a tree, (8a)

∀1 ≤ i ≤ k : G/{V1, . . . , Vi} with all loops removed is a tree, (8b)

∀1 ≤ i ≤ k : G[Vi] is a tree. (8c)

Proof. (8a) and (8b) ⇒ (8c): G[Vi] does not contain a cycle. It must be con-
nected, because otherwise there would be a path between any two of its compo-
nents in G contracting to a non-trivial (i.e. not a loop) cycle in G/{V1, . . . , Vi}.

(8a) and (8c)⇒ (8b): G/{V1, . . . , Vi} is connected because it is a contraction
of a connected graph. Since we only contract connected sets, a non-trivial cycle
in G/{V1, . . . , Vi} corresponds to a cycle in G.

(8b) and (8c) ⇒ (8a): G is connected because it is obtained from the con-
nected graph G/{V1, . . . , Vi} by replacing several vertices by graphs G[Vi], which
are connected by assumption. There cannot be a cycle in G, because such a cycle
would either be contained in G[Vi], for some i, or contract to a non-trivial cycle
of G/{V1, . . . , Vi}.

Lemma 3.5. Let T be a tree with vertex set V and V1, V2 ⊆ V . If T [V1] and
T [V2] are trees, then T [V1 ∩ V2] is also a tree.

Proof. Obviously, there is no cycle in T [V1 ∩ V2]. To see that it is connected,
observe that for any two vertices u, v ∈ V1 ∩V2 there are unique u-v-paths in T ,
T [V1] and T [V2]. Those paths coincide and are in T [V1 ∩ V2].

Lemma 3.6. Let G be a graph with vertex set V = V1∪V2. Assume that G[V1],
G[V2], and G[V1 ∩V2] are trees, and that there are no edges between V1 \V2 and
V2 \ V1. Then, G is a tree.

Proof. Clearly, every cycle in G has to use vertices in both V1 and V2 \ V1. Any
path from V1 to V2 \V1 has to use at least one vertex in V1 ∩V2. But any vertex
in V2 \V1 may be separated from V1∩V2 by removing a single edge. This implies
that there cannot be two edge disjoint paths from a vertex v ∈ V2 \ V1 to V1.
Hence, G is acyclic. Since G is trivially connected, it is a tree.

The following two lemmata are specific to the situation of clique trees of
chordal graphs. They contain some key steps of the proof of Theorem 3.3.

Lemma 3.7. Let K ∈ F ∈ FG. Let S be a subgraph of ΓF with vertex set
[K]∼F

. If, for each clique family F ′ ( F with F ′ ⊆ [K]∼F
, S[F ′] is a tree, then

S is a tree.

Proof. Note that every clique family F ′ ( F is either fully contained in [K]∼F

or disjoint from it. Indeed, any two cliques K1,K2 ∈ F ′ satisfy K1 ∩ K2 ⊇
C(F ′) ) C(F ). Thus, they are connected by an edge in ΓF .
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S is connected: Let K ′ be a vertex of S. Since K ∼F K ′, there is a K ′-K-
path K0 . . .Kn in ΓF . The definition of edges in ΓF implies that Ki ∩Ki−1 )
C(F ). Thus, Fi := F (Ki ∩Ki−1) ( F and S[Fi] is a tree containing a Ki−1-Ki-
path Pi. The concatenation of P1, . . . , Pn contains a K-K ′-path in S.

S is acyclic: Let MF be the maximal strict clique subfamilies of F . We say
that F ′ ∈ MF covers an edge e ∈ S, if e ∈ S[F ′]. Because S is a subgraph of
ΓF , every edge of S lies in some strict subfamily of F . Thus, it is covered by
some clique family in MF .

Assume that S contains a cycle. Note that no cycle in S is completely con-
tained in any F ′ ∈ MF , as S[F ′] is a tree. Hence, let 2 ≤ R ≤ |MF | be the
minimum number of clique families in MF needed to cover a cycle in S. A
subset ofMF covers a cycle, if each edge of the cycle is covered by at least one
element of the subset.

Lemma 3.8 asserts the existence of a cycle Z with cover {F1, . . . , FR} such
that Fi ∩ Fj = ∅, if and only if i 6= j or i − j 6= 1 mod R. We show that this
existence result leads to a contradiction. We distinguish cases by the size of R.

Case of R = 2: We have that F1 ∩ F2 6= ∅ is a clique family. Because S[F1],
S[F2] and S[F1∩F2] are trees, we apply Lemma 3.6 to deduce that S[F1]∪S[F2]
is a tree and cannot contain the cycle Z.

Case of R = 3: Let Ci := C(Fi) be the maximal generator of the clique
family Fi. Since there is a clique in Fi∩Fj , we know that Ci∪Cj is complete for

all 1 ≤ i, j ≤ 3. Hence C :=
⋃3

i=1 Ci is complete and ∅ 6= F (C) ⊆
⋂3

i=1 Fi. We
apply Lemma 3.6 three times. First, to the trees S[F1], S[F2] and S[F1 ∩ F2],
deducing that S[F1]∪S[F2] is a tree. Second, to the trees S[F1 ∩F3], S[F2 ∩F3]
and S[F1 ∩ F2 ∩ F3], deducing that S[F1 ∩ F3] ∪ S[F2 ∩ F3] is a tree.

Before the third application, we check that S[F1∩F3]∪S[F2∩F3] = (S[F1]∪
S[F2]) ∩ S[F3]. Clearly, the two graphs have the same vertex set. They also
have the same edge set, unless there is an edge connecting F1 \ (F2 ∪ F3) to
F2 \ (F1 ∪ F3). But any such edge K1K2 together with the unique K1-K2-path
in S[F1 ∩ F3] ∪ S[F2 ∩ F3] yields a cycle in S[F3].

Hence, we can apply Lemma 3.6 to S[F1]∪S[F2], S[F3] and (S[F1]∪S[F2])∩
S[F3] showing that S[F1] ∪ S[F2] ∪ S[F3] is a tree and cannot contain Z.

Case R ≥ 4: Again, let Ci := C(Fi) and let Di := Ci \ C(F ) 6= ∅. Note that
for any vertex v ∈ Di, the set C(F )]{v} generates a clique family satisfying Fi ⊆
F (C(F ) ] {v}) ( F . Since Fi was assumed to be a maximal strict subfamily
of F , we infer that Fi = F (C(F ) ] {v}). In particular the sets Di are disjoint,
because v ∈ Di ∩Dj would imply Fi = Fj = F (C(F ) ] {v}).

We investigate the edges between the sets Di. Since there is a clique in
Fi ∩ Fi+1, we know that Ci ∪ Ci+1 and thus also Di ∪ Di+1 is complete. The
same is true for DR∪D1. We claim that there are no edges between Di and Dj ,
if i 6= j or i − j 6= 1 mod R. Assume for a contradiction that there is an edge
vivj with vi ∈ Di and vj ∈ Dj . Then, F (C(F ) ] {vi, vj}) is complete. Hence,
there is a clique K ∈ Fi ∩ Fj = ∅, a contradiction.

For 1 ≤ i ≤ R, choose vi ∈ Di. The cycle v1 . . . vR with length R ≥ 4 is
chordless and contradicts the chordality of G.

Lemma 3.8. There exists a cycle Z of S with cover {F1, . . . , FR} such that
Fi ∩ Fj = ∅, if and only if i 6= j or i− j 6= 1 mod R.

Proof. For a cycle Z with cover (Fi)
R
i=1 and for each 1 ≤ i ≤ R, let Oi be the
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edges only covered by Fi and let oi be the number of connected components
of Z[Fi] containing an edge of Oi. Minimality implies that, for all 1 ≤ i ≤ R,

Oi 6= ∅ and oi ≥ 1. Hence, R ≤ o :=
∑R

i=1 oi ≤ |[K]∼F
|.

First, we show that there exists a cycle with a cover of size R and o =
R. Without loss of generality, suppose that o1 ≥ 2. Split Z into four paths
P1, . . . , P4, where P1 and P3 are connected components of Z[F1] containing
an edge of O1 and P2 and P4 are the complementary parts of Z in between.
Replacing P4 by the unique path in Z[F1] between the P4-endpoints of P1 and
P3 and deleting duplicated edges and loops yields a cycle Z ′. The cycle Z ′ has
cover (Fi)

R
i=1, o′1 < o1 and o′l ≤ ol, for 2 ≤ i ≤ R. Thus, o′ < o and iteration of

this operation yields the claim.
Assume that o = R. We know that Oi is a path in Z, for 1 ≤ i ≤ R. From

here on, we assume that the index of the Fi matches the cyclic appearance of
the Oi along Z. First, it is easy to see that if i 6= j or i − j 6= 1 mod R, then
Fi ∩ Fj = ∅. Otherwise a shortcutting path between Oi and Oj through Fi and
Fj leads to a cycle with a cover of size less than R, contradicting the minimality
of R.

Let O :=
∑R

i=1 Oi. We investigate a non-O edge e of Z. Two distinct f1, f2 ∈
O bracket e. They are either only covered by different or the same clique family.

First, assume that F1 and F2 only cover f1 and f2 respectively. Assume that
Fi covers e, for some 3 ≤ i ≤ R. Choose an edge g ∈ Oi. Create a new cycle Z ′

by replacing the path in Z between the f1-endpoints of e and g by their unique
path in S[Fi] and deleting duplicated edges and loops. The cycle Z ′ is covered
by {F2, . . . , FR}, contradicting the minimality of R. Hence, the edge e is covered
by exactly F1 and F2, as it is neither in O1 nor O2.

Second, assume that F1 only covers both f1 and f2. The fact that o1 = 1
implies that F1 covers e. Hence, only F2 may cover e, too (we omit the symmetric
case of Fr). Assume that F2 covers e. By the first case, we know that there is a
vertex K ′ in Z having at least an incident edge covered by F1 and F2 respectively.
Shortcut Z by a path between e and K in S[F1∩F2] and remove duplicate edges
and loops. The resulting cycle Z ′ has O′1 ( O1 and O′i ⊆ Oi, for 2 ≤ i ≤ R. As
Oi 6= ∅ by the minimality of R, this reduction either terminates after a finite
number of iterations.

Thus, a non-O edge is covered by exactly the differing clique families covering
only the two bracketing O-edges. Together with the result o = R, this implies
the statement.

3.5 Proof of Theorem 3.3

We prove the equivalences (6) ⇔ (7a) and (7a) ⇔ (7b). For convenience, we
restate them. A spanning subgraph T of KG is a clique tree of G, if and only if
it satisfies one of the following equivalent conditions:

T is a tree and ∀v ∈ V : T [F (v)] is a tree, (6)

∀F ∈ FG : T [F ] is a tree, (7a)

∀F ∈ FG : T [F ]/ ∼F without loops is a tree. (7b)

(6) ⇒ (7a): If F = KG or F = F (v), for some vertex v ∈ V , then T [F ]
is a tree. Assume that (7a) does not hold. The finiteness of chains in FG lets
us choose a maximal F ∈ FG such that T [F ] is not a tree. Furthermore, each
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generator of F contains at least two vertices. Let C ⊆ C(F ) be a minimal
generator of F . For every ∅ 6= C ′ ( C, the contravariance of clique family
generation (1) implies that F (C ′) and F (C \ C ′) are strictly larger than F and
F = F (C ′)∩F (C \ C ′). Maximality of F implies that T [F (C ′)] and T [F (C \ C ′)]
are trees. Lemma 3.5 implies that T [F ] is a tree, too.

(7a)⇒ (6): Equation (7a) implies that T [F (v)] is a tree, for each v ∈ G, and
that T [KG] = T is a tree. This is just the definition of a clique tree.

(7a) ⇒ (7b): Let F ∈ FG. Lemma 3.7 together with the assumption that
T [F ′] is a tree for every F ′ ( F implies that T [[K]∼F

] is a tree, for every
equivalence class with respect to the relation ∼F . If F 6= KG, then there are
only finitely many equivalence classes. Hence, we apply Lemma 3.4 to show
that T [F ]/ ∼F is a tree. For F = KG, we know that T [KG] is a tree. Whence,
T/ ∼F [F ] is a single vertex tree.

(7b) ⇒ (7a): Assume that there is some F ∈ FG such that T [F ] is not a
tree. Choose F minimal with this property. This is possible because chains in
FG are finite. Lemma 3.7 implies that T [[K]∼F

] is a tree for every equivalence
class with respect to ∼F . Since there are only finitely many equivalence classes
and T [F ]/ ∼F is a tree, Lemma 3.4 shows that T [F ] is a tree.

3.6 Edge bijections

The conditions in Theorem 3.3 a priori overlap between different clique families.
We show that the restrictions imposed by a clique family and its strict sub-
families may be separated. The key is differentiating between the restrictions
imposed by a clique family and the restrictions imposed by its strict subfamilies.
In this way, the restrictions are indexed by the clique families and become dis-
joint. With the help of a partition of the edges of KG, we factor (7b) and write
the set of clique trees as the product of sets of smaller trees, see Theorem 3.10.
The product is indexed by the clique families. For a given clique family, the
associated set of trees is independent of the sets of trees for subfamilies of the
clique family.

Let F ∈ FG. Recall that ΓF was defined as the subgraph of KG[F ] contain-
ing all edges between cliques whose intersection is strictly larger than C(F ).
Let ΞF be the subgraph of KG[F ] containing the remaining edges. That is, ΞF

contains an edge K1K2, if F (K1 ∩K2) = F , or equivalently K1 ∩K2 = C(F ),
by Proposition 2.2. Intuitively, the graph ΞF connects cliques in F whose inter-
section is ”as small as possible” within KG[F ]. It is obvious from the definitions
that ΓF and ΞF partition the edges of KG[F ] into two disjoint sets.

Consider the multigraph ∆F := ΞF / ∼F , i.e., all components of ΓF are
contracted to single points. This graph may contain (multiple) loops. We use
the natural bijection between edges of ΞF and edges of ∆F to label the edges
of ∆F and differentiate between them.

It is worth noting that KG[F ] can be obtained from ∆F by adding additional
loops. As a consequence, spanning trees of the two graphs are in one-to-one
correspondence.

Proposition 3.9. There is a bijection between the edges of KG and the disjoint
union over all clique families F of edges of ΞF . Via edge-labelling, this extends
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to the disjoint union of edges of ∆F .

KG
edges
=

⊎
F∈FG

ΞF
edge-labelling

=
⊎

F∈FG

∆F . (9)

Proof. For K1K2 ∈ KG, regard the clique family F := F (K1 ∩K2). By Propo-
sition 2.2, we have K1 ∩K2 = C(F ). The definition of ΞF allows K1K2 only as
an edge in ΞF and not in any other ΞF ′ , for each other clique family F ′.

Theorem 3.10. There is a bijection between the clique trees CTG and a FG-
indexed product of sets of spanning trees. For each clique tree, its edges and
the edges of the spanning trees in its corresponding FG-indexed collection are in
bijection, too.

CTG
edge-labelling

=
∏

F∈FG

T∆F
. (10)

A similar bijection to (10) between the clique trees of a finite chordal graph
and a product of trees indexed by the minimal vertex separators (see before
Theorem 3.15) of the graph is already known [9]. We discuss the relationship in
Section 3.8.

Proof. Using the bijection from Proposition 3.9, we split the edges of a clique
tree T ∈ CTG into disjoint sets EF := {K1K2 : K1K2 ∈ T,K1K2 ∈ ΞF },
indexed by FG. For F ∈ FG, statement (7b) tells us that EF labels the edges
of a spanning tree of ∆F .

Conversely, select a spanning tree TF ∈ T∆F
, for each F ∈ FG. Let E be the

union of their edge-labels. By Proposition 3.9, each edge in E appears exactly
once as an edge-label of some TF . By (7b), the graph T := (KG, E) is a clique
tree.

3.7 Enumerating the clique trees

In this section, we enumerate the clique trees of a given chordal graph. We start
with a structure statement about the auxiliary multigraphs.

Proposition 3.11. The multigraph ∆F is complete.

Proof. Case C(F ) = ∅: This only happens, if G contains disjoint cliques and
F = KG. In this case, we have ΓKG

= KG, ΞKG
= (KG, ∅) and ∆KG

is a graph
with one vertex (KG forms one equivalence class under ∼F ) and no edges.

Case C(F ) 6= ∅: This implies that F is finite. For all distinct K1,K2 ∈ F ,

∅ 6= C(F ) =
⋂

K∈F
K ⊆ K1 ∩K2 .

Therefore, KG[F ] is complete and so is ∆F .

An immediate consequence of (10) is a count of clique trees of a finite chordal
graph.

|CTG| =
∏

F∈FG

|T∆F
| . (11)

The value of |T∆F
| is explicitly given in terms of the structure of ∆F as a

complete multigraph via a matrix-tree theorem from [9].

10
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Corollary 3.12. Fix D ∈ N. For every finite chordal graph G with maximal
degree D and vertices V , one can generate CTG sequentially with only O(|V |)
working memory.

Proof. As the degree is uniformly bounded, so are the sizes of a clique (by D+1),

a finite clique family F (by D := (D+ 1)(D+1)2) and its spanning trees T∆F
(by

DD−2 via Cayley’s formula). Furthermore, as each vertex is only contained in
a uniformly bounded number of cliques and, hence, clique families, the size of
FG is linear in |V |. Generate T∆F

, for all F ∈ FG. This takes memory linear in
|V |, with worst case multiplicative constants given by the bounds in D above.
Iterate in lexicographic order through all the local choices of spanning trees and
use (10) to obtain a clique tree from a full set of local choices.

For infinite chordal graphs, there is a dichotomy in the number of clique
trees.

Corollary 3.13. Let G be an infinite chordal graph. It has either finitely or 2ℵ0

many clique trees.

Proof. We look at {|T∆F
|}F∈FG

. It is countable, because FG is so. If only a finite
number of these numbers are greater than 1, then the number of clique trees is
finite. If an unbounded number of these numbers are greater than 1, then there
is a countable number of independent choices between more than two spanning
trees and the number of clique trees is 2ℵ0 .

Example 3.14. Let T be the infinite regular tree of degree 3. Its cliques are its
edges and its clique graph KT is isomorphic to the line graph of T . Here, each
finite clique family F is the set of cliques (seen as edges) incident to a given
vertex of T . Its induced subgraph of the clique graph and ∆F are both isomorph
to the complete graph on 3 vertices. There are 3 spanning trees in ∆F . Hence,
there are 2ℵ0 many clique trees of T . Of course, this is a simplistic example of
looking for a tree representation, with T already being a tree.

3.8 Minimal vertex separators and the reduced clique graph

As mentioned previously, a bijection indexed by minimal vertex separators and
similar to (10) was given by Ho and Lee [9]. Lemma 3.17 shows that the minimal
vertex separators correspond to the maximal generators of clique families with
a non-trivial contribution to the bijection. As a consequence, the two decompo-
sitions coincide.

Following [3, Section 2.2], we call ∅ 6= W ⊆ V a v-w-separator, if v and
w lie in different connected components of G[V \ W ]. We call ∅ 6= W ⊆ V
a minimal vertex separator, if there exist vertices v and w, such that W is a
v-w-separator and no proper subset of W is a v-w-separator. Minimal vertex
separators characterise chordal graphs.

Theorem 3.15 ([3, Theorem 2.1] after [5]). A graph is chordal, if and only if
every minimal vertex separator is complete.

The remainder of this section shows that the minimal vertex separators form
a subset of the maximal generators of the clique families.

11
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Lemma 3.16. A minimal vertex separator in a chordal graph separates two
vertices adjacent to all of it.

Proof. Let C be a minimal v1-v2-separator. For every w ∈ C, there exists a w-
v1-path Pw with Pw ∩C = {w}. The path Pw may be assumed to be chordless,
i.e., non-successive vertices are not connected. For each w ∈ C, let vw1 be the
neighbour of w on Pw. Let V1 := {vw1 | w ∈ C} 6= ∅. If we show that one u1 ∈ V1

fulfils C ∪{v} ∈ CG, then a symmetric argument for a likewise u2 on the v2-side
shows that C is a minimal u1-u2-separator.

For each v ∈ V1, let Cv := {w ∈ C | vw ∈ G}. In particular, w ∈ Cvw
1
6= ∅.

Order V1 by the partial order induced by the subset relation on {Cv | v ∈ V1}. If
there exists a unique maximal element v in V1, then, for all w ∈ C, w ∈ Cvw

1
⊆

Cv. Whence, Cv = C and Cv ∪ {v} ∈ CG.
If there exist more than one maximal element in V1, then let u and v be two

of them. This implies that there exist wu ∈ Cu \Cv and wv ∈ Cv \Cu. Because
wu and wv lie in C, they are connected. Join Pwu , the wuwv edge and Pwv to
obtain a cycle in G. Since u and wv are not connected, there must be a chord
incident to wu. Because Pwu

is chordless, the other end of the chord must be
a vertex in Pwv

\ {wv, v}. Let z be the neighbour of wu in Pwv
\ {wv, v} which

lies closest to v (measured along Pwv ). Consider the smaller cycle formed by the
edges zwu, wuwv and Pwv between wv and z. It contains z, wu, wv and v and has
length at least 4. But the vertex wu cannot be incident to a chord, because of the
minimality of z and all other vertices lie on the chordless path Pwv

. Thus, there
cannot be a chord and there cannot be multiple maximal elements of V1.

Lemma 3.17. A complete set of vertices C ∈ CG is a minimal vertex separator
of G, if and only if it is the maximal generator of F (C) and ∆F (C) contains
more than one vertex.

Proof. Let C be a minimal vertex separator. By Theorem 3.15, C is complete.
By Lemma 3.16, C separates v1 and v2 such that C ] {v1} and C ] {v2} are
complete. Hence, there are cliques K1,K2 ∈ F (C) =: F with C ] {v1} ⊆ K1

and C ] {v2} ⊆ K2.
It is immediate that C is the maximal generator of F , because any generator

of F is contained in both K1 and K2. Thus, a bigger generator would give a
common neighbour of V1 and V2 outside of C, contradicting the fact that C is
a v1-v2-separator.

In order to prove that ∆F has at least two vertices, it suffices to show that
there is no K1-K2-path in ΓF . So assume that there was such a path P . For
each edge KK ′ ∈ P , there is a vertex vKK′ ∈ (K ∩ K ′) \ C 6= ∅. The graph
G[{v1, v2} ∪ {vKK′ | KK ′ ∈ P}] contains a v1-v2-path. This contradicts the
vertex separator property of C.

For the converse implication, let F be a clique family with ∆F having more
than two vertices. Choose two distinct vertices [K1]∼F

and [K2]∼F
of ∆F . It

follows that K1 6∼F K2, equivalent to K1∩K2 = C(F ) =: C. Choose v1 ∈ K1\C
and v2 ∈ K2 \ C. We claim that C is a minimal v1-v2-separator.

Minimality is obvious, as, for every v ∈ C, v1vv2 is a path in G[V \(C \{v})].
It remains to show that C separates v1 and v2. Assume for a contradiction that
there is a v1-v2-path P in G[V \C]. For every w ∈ P , there is a minimal v1-v2-
separator containing C ] {w}. Since minimal vertex separators are complete, w
is connected to all of C and C ] {w} ∈ Kw ∈ F (C). The sequence (Kw)w∈P

12
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is a K1-K2-path in ΓF , contradicting the original choice of K1 and K2 from
different connected components. Therefore, C is a v1-v2-separator.

The reduced clique graph [6] RG of G is the subgraph of KG retaining only
those edges K1K2 with K1 ∩K2 a minimal vertex separator.

Theorem 3.18 (Generalisation of [6, Theorem 7]). The set {K1∩K2 | K1K2 ∈
T} is an invariant of a clique tree T ∈ CTG and equals the set of minimal vertex
separators of G. The union of the clique trees of a chordal graph G is the reduced
clique graph RG.

Proof. The statements are direct consequences of Lemma 3.17 together with
the bijection in Theorem 3.10. The {K1 ∩ K2 | K1K2 ∈ T} are the labels of
non-loops in the ∆F .

4 Classic characterisations of clique trees

For finite chordal graphs, there exist other characterisations of clique trees be-
sides (6). This section generalises or adapts these results to the infinite case.
The characterisations are the clique intersection property in Theorem 4.1, the
running intersection property in Theorem 4.2 and the maximal weight spanning
tree property in Theorem 4.4.

A tree T ∈ TKG
has the clique intersection property, if K1 ∩K2 ⊆ K3 holds,

for every three cliques K1,K2,K3 with K3 lying on the K1-K2-path in T .

Theorem 4.1 (Generalisation of the finite case in [3, Section 3.1]). The tree
T ∈ TKG

is a clique tree, if and only if it fulfils the clique intersection property.

Proof. The clique intersection property is a constraint only if K1 ∩K2 6= ∅. In
this case, F (K1 ∩K2) =: F is a finite clique family.

Assume that T ∈ TG is a clique tree. Thus, T [F ] is a subgraph of KG[F ]
and contains a K1-K2-path P . For every K3 ∈ P , we have K3 (

⋂
K′∈F K ′ =

C(F ) = K1 ∩K2. Thus, T fulfils the clique intersection property.
Assume that T ∈ TG fulfils the clique intersection property. It implies that

T [F ] must be a subgraph of KG[F ]. By Proposition 2.2, the set C := {K1∩K2 :
K1K2 ∈ KG} is the set of maximal generators of all finite clique families of
cardinality at least two. Therefore, T [F (C)] is a tree, for every C ∈ C. For the
clique families KG and {K}, for each clique K, T [F ] is trivially a tree. Conclude
by (7a).

An enumeration {K1,K2, . . . } of KG has the running intersection prop-
erty [3, (3.1)] (after [1, Condition 3.10]), if

∀ 2 ≤ n ∈ N : ∃ 1 ≤ i < n : Kn ∩
n−1⋃
j=1

Kj ⊆ Ki . (12)

A tree T ∈ TKG
has the running intersection property, if there exists an enumer-

ation of KG with the running intersection property such that the KnKi (with
i := i(n) as in (12)) are the edges of T .

Theorem 4.2 (Generalisation of [3, Theorem 3.4]). The tree T ∈ TKG
is a

clique tree, if and only if it has the running intersection property.
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Proof. The proof of the finite case [3, Theorem 3.4] shows the equivalence to
the clique intersection property. Thus, it generalises without modification to the
infinite case.

For T ∈ CTG, one obtains an enumeration of KG by fixing a root, starting
with it, then enumerating all its children, then their children in turn and so on
recursively.

To a spanning tree T ∈ TKG
of the clique graph of a finite graph G assign

the weight w(T ) :=
∑

K1K2∈T |K1 ∩ K2|. The maximal weight spanning tree
property is another classic characterisation of finite clique trees.

Theorem 4.3 ([3, Theorem 3.5] after [2]). Let G be a finite chordal graph. The
spanning tree T ∈ TKG

is a clique tree, if and only if T has maximal weight with
respect to w, that is

T ∈ argmax{w(S) | S ∈ TKG
} . (13)

Condition (13) makes no sense in the infinite case. A local version holds,
though.

Theorem 4.4. Let G be a chordal graph. The spanning tree T ∈ TKG
is a clique

tree, if and only if

∀F ∈ FG, |F | <∞ : T [F ] ∈ argmax{w(S) | S ∈ TKG[F ]} . (14)

Proof. We show the equivalence between (14) and (7b) by induction over the
size of the maximal generator of a clique family. The minimal clique families
are F (K) = {K}, for a clique K, and the equivalence holds trivially, as ∆{K}
contains only a single vertex {K} and no edges. Suppose that F has minimal
cardinality and violates the equivalence. Split the sum w(T [F ]) into two parts.
The first part is a sum over edges in ΓF . By the minimality of F , the equivalence
holds for all strict subfamilies of F and this sum is a constant. The second part
is a sum over the edges in ΞF . All edges in ΞF have the same weight |C(F )|.
Hence, the equivalence between maximality of the second sum and the subgraph
of ∆F induced by the edge-labels of T being spanning is obvious.
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