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Abstract. The basis number of a graph G is the smallest integer k such that G admits a
basis B for its cycle space, where each edge of G belongs to at most k members of B. In this
note, we show that every non-planar graph that can be embedded on a surface with Euler
characteristic 0 has a basis number of exactly 3, proving a conjecture of Schmeichel from
1981. Additionally, we show that any graph embedded on a surface Σ (whether orientable
or non-orientable) of genus g has a basis number of O(log(g)2).

1 Introduction

Consider a graph G. The cycle space of G, denoted as C(G), forms a vector space over the
field F2. In this space, the elements are spanning subgraphs of G in which all degrees are
even, where the vector addition is defined by the symmetric difference of the edge sets
of these subgraphs. Topologically, the cycle space is characterized by the first homology
group H1(G,Z2). The dimension of the cycle space, known as the Betti number of G, is given
by β(G) = |E| − |V | + 1 (see [9]). Cycle space theory has a wide range of applications, with
numerous results documented in the literature [8, 10, 20–22]. Additionally, the cycle space
has been extensively studied in the context of planar graphs. A planar graph is a graph that
can be drawn in a plane without any of its edges crossing. MacLane’s celebrated planarity
criterion [14] characterizes planar graphs in terms of their cycle spaces.

Lemma 1 (MacLane’s planarity criterion [14]). A graph is planar if and only if there is a basis
for its cycle space such that every edge lies in at most two elements of the basis.

Schmeichel [19] introduced a specific term for the property described in MacLane’s pla-
narity criterion.

Definition 1 (cf.[19]). The basis number of a graph G denoted by bn(G) is defined as the
smallest integer k for which G admits a basis B that spans its cycle space, such that each
edge in G belongs to no more than k members of B.

For instance, by Maclane’s theorem we know that a graph is planar if and only if the basis
number of G is 2. A k-basis is a basis B where every edge in G is contained in at most k
members of B. There are several results on this topic, see Alsardary [1], Alzoubi and M.
M. M. Jaradat [3, 13], M. M. M. Jaradat [11, 12], and McCall [15].

One may inquire about the basis number of generalizations of planar graphs, as dis-
cussed in [5]. In 1981, Schmeichel proved that if G is a graph with genus g, then the basis
number of G is at most 2g + 2 [19, Theorem 6]. Additionally, he conjectured the following.
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Conjecture 2. [19] Every toroidal graph has basis number 3.

In this paper, we prove the conjecture. More generally, we prove the following theorem.

Theorem 3. Let G be a non-planar graph which can be embedded on a surface of Euler charac-
teristic 0. Then bn(G) = 3.

We also investigate the relationship between genus and basis number for graphs of higher
genus and show that the basis number is asymptotically much smaller than the genus of a
graph.

Theorem 4. Let G be a graph embedded on a (orientable or non-orientable) surface Σ of genus
g. Then bn(G) = O(log(g)2).

2 Preliminaries

Throughout this short note, we shall use log for the base-2 logarithm and ln for the natural
(base-e) logarithm.

Let us write Og for the orientable surface of genus g, that is, a surface homeomorphic to a
sphere with g handles, and Ng for the non-orientable surface of (non-orientable) genus g, that
is, a surface homeomorphic to a sphere with g cross-caps. The well-known classification
of compact surfaces states that every compact surface without boundary is homeomorphic
to either Og for some g ≥ 0, or Ng for some g ≥ 1.

An embedding of a graph G on a surface Σ is a drawing of G on Σ where no edge cross-
ings are allowed. Whenever we talk about embeddings in this paper, it will be assumed
that Σ is a compact surface without boundary, and that each connected component of Σ∖G
is homeomorphic to an open disc known as a face.

Let G = (V ,E) be a graph embedded on a surface Σ and let F denote the set of faces
of the embedding. The well-known Euler formula states that |V | − |E| + |F| = 2 − 2g if Σ

is orientable of genus g, and |V | − |E| + |F| = 2 − g if Σ is non-orientable of genus g. The
quantity χ = |V | − |E|+ |F| is often called the Euler characteristic of the surface Σ; this only
depends on Σ and not on the graph, so we denote it by χ(Σ).

A (topological) cycle on a surface Σ is a homeomorphic image of the unit circle S1in Σ.
A (graph theoretical) cycle in a graph G is a connected, 2-regular subgraph of G. Note that
if G is embedded in Σ, then every graph theoretical cycle in G corresponds to a topological
cycle in Σ. Since these are the only cycles of interest in this paper, we may drop the
distinction between the two notions; in other words, when talking about cycles we always
mean cycles in an embedded graph which (by slight abuse of notation) are identified with
their respective embeddings. A cycle C is called separating if Σ∖ C has more than one
connected component, and non-separating otherwise.

The cycle space of a graph G = (V ,E) is the set of all subgraphs of G in which all degrees
are even. This can be seen as a vector space over F2, more specifically a subspace of F|E|2
by identifying each subgraph with the characteristic vector of the edges contained in it. A
cycle basis is a basis of the cycle space.
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Note that elements of the cycle space are not necessarily cycles, but there are cycle
bases consisting only of cycles. For instance, it is well known that if T is a spanning tree
of T , then the fundamental cycles with respect to T , that is, the cycles containing precisely
one edge not in T , form a cycle basis of G. In particular, the dimension of the cycle space
of a graph G = (V ,E) is |E| − |V |+ 1.

Assume that G is embedded on a surface Σ. Note that each edge e either lies in the
closures of two different faces, or in the closure of exactly one face. To each face F of
the embedding we can define an element of the cycle space called the face boundary of F,
consisting of all edges in the closure of F which also lie in the closure of some other face.
By slight abuse of notation, we will sometimes also refer to a face F as an element of the
cycle space; this will always mean the face boundary of F. Each edge either appears in 2
or in 0 face boundaries (depending on whether it lies in the closure of two different faces
or not), thus the sum of all face boundaries in the cycle space is 0, or in other words, every
face boundary is the sum of all other face boundaries. Moreover, every separating cycle C
can be written as the sum of the face boundaries of the faces contained in one connected
component of Σ∖C.

The face boundaries alone do not generate the whole cycle space of an embedded
graph unless the surface is the sphere. However, the following lemma can be deduced
from the main result of [18].

Lemma 5. Let G be a graph embedded on a surface Σ, let F be the set of face boundaries of the
embedding, and let T be a spanning tree of G. There is a set U of 2−χ(Σ) edges not in T such
that the fundamental cycles of edges in U with respect to T together with any |F | − 1 elements
of F form a cycle basis for G.

We point out that the fundamental cycles in this lemma are necessarily non-separating
since otherwise they would not be linearly independent from the face boundaries.

Recall that a k-basis of the cycle space is a basis B such that every edge is contained
in at most k members of B, and the basis number of a graph G, denoted by bn(G) is the
minimal k for which there is a k-basis. Since every edge is contained in at most two face
boundaries, Lemma 5 immediately implies that the basis number of a graph drawn on a
surface Σ is at most 4−χ(Σ). If Σ is orientable of genus g, this means that bn(G) ≤ 2 + 2g,
if Σ is non-orientable of genus g , then bn(G) ≤ 2 + g.

3 Basis number of graphs embedded on surfaces with low genus

In this section show that the basis number of every non-planar graph which can be em-
bedded on the torus O1, the projective plane N1, and the Klein bottle N2 is 3. For the
projective plane this immediately follows from the discussion after Lemma 5: the Euler
characteristic is 1, therefore the facial cycles together with one additional cycle generate
the cycle space.

The torus and the Klein bottle both have Euler characteristic 0, so we need to add
two cycles to the set of face boundaries to generate the whole cycle space. This gives a
generating set where each edge is contained in at most 4 of the elements: two facial cycles
and at most two of the additional cycles. Recall that we need to remove precisely one
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face boundary from this generating set to obtain a basis. In particular, if there is a face
boundary f0 which contains all edges in the intersection of the two additional cycles, then
removing this face boundary yields a 3-basis.

The following easy lemma allows us to replace a pair of cycles with another pair of
cycles whose intersection is contained in a face boundary. We point out that when talking
about unions or intersections of elements of the cycle space, we always mean unions or
intersections of the corresponding edge sets.

Lemma 6. Let G be a graph with cycle space C(G), let F ⊆ C(G) and let x,y ∈ C(G). Assume
that we can find h,k ∈ span(F ) and f0 ∈ F such that

x∩ y ⊆ h∪ k ∪ f0, x∩ k ⊆ h∪ y ∪ f0, h∩ y ⊆ x∪ k ∪ f0, h∩ k ⊆ x∪ y ∪ f0.

Then span(F ∪ {x,y}) = span(F ∪ {x+ h,y + k}) and (x+ h)∩ (y + k) ⊆ f0.

Proof. Since h and k are contained in span(F ), replacing x by x+ h and y by y + k does not
change the span. For the second part, note that if an edge e is in both x + h and y + k, then
it is contained in precisely one of the sets x and h, and in precisely one of the sets y and
k. Consequently it must be contained in one of the sets (x ∩ y) ∖ (h∪ k), (x ∩ k) ∖ (h∪ y),
(h∩y)∖ (x∪k), and (h∩k)∖ (x∪y). By assumption, all of these sets are contained in f0.

Theorem 3. Let G be a non-planar graph which can be embedded on a surface of Euler charac-
teristic 0. Then bn(G) = 3.

Proof. Let Σ be the surface the graph is embedded in. Denote by F the set of face bound-
aries. By Lemma 5, there are two fundamental cycles x and y with respect to some span-
ning tree T of G such that F ∪ {x,y} generates the cycle space.

Our goal is to find h,k ∈ span(F ) and f0 ∈ F satisfying the conditions of Lemma 6.
Note that in this case F ∪{x+h,y + k} generates the cycle space. Since F is linearly depen-
dent, B := (F ∖ {f0})∪ {x+h,y + k} still generates the cycle space. If an edge is contained in
both x+h and y+k, it is only contained in one element of F ∖f0 because (x+h)∩(y+k) ⊆ f0.
Thus every edge is contained in at most 3 elements of B, therefore proving the theorem.

It remains to find h, k, and f0. If x ∩ y = ∅, then we may set h = k = ∅, and f0 ∈ F
arbitrary; this satisfies the conditions of Lemma 6 because the left hand side in each of the
inclusions in the condition is ∅.

Hence we may assume that x∩ y , ∅. Since x and y are both fundamental cycles with
respect to the tree T , the set x∩ y is the edge set of a path Px,y in T and the sets x∖ y and
y∖x are the edge sets of (vertex) disjoint paths Px and Py connecting the endpoints of Px,y .
In particular, the subgraph H of G spanned by the edge set x ∪ y consists of two vertices
and three disjoint paths between these two vertices.

We claim that the embedding of H has exactly one face. Indeed, H contains precisely
3 cycles: x, y, and x + y. If H had more than one face, then one of these cycles would have
to be separating, and thus it would be contained in span(F ). But then (F ∖ {f }) ∪ {x,y}
would be linearly dependent for every f ∈ F and therefore could not be a basis.
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Figure 1: Fundamental polygons obtained by cutting along the edges of x∪y. The left side
results from cutting the torus, the right side from cutting the Klein bottle.

Cutting along x ∪ y we therefore obtain a surface homeomorphic to a closed disk (a
fundamental polygon of Σ which we denote by Σ′). The embedding of G lifts to an em-
bedding of a graph G′ in Σ′ where the paths Px,y , Px, and Py in G each correspond to two
paths in G′ embedded on the boundary of Σ′. Consequently, the boundary of Σ′ can be
decomposed into 6 paths (the sides of the fundamental polygon) corresponding to the two
sides of Px,y , Px, and Py , which we denote by px,y , p′x,y , px, p′x, py , and p′y , respectively.

Note that the sides corresponding to the two sides of the same path in G cannot be
adjacent on the boundary. Further, note that we can swap the roles of the different paths
by replacing x or y with x+y. Thus, up to swapping the roles of the paths we end up in one
of the two scenarios depicted in Figure 1. We note that if the surface is the torus, then we
end up with the polygon on the left side of Figure 1, and if the surface is the Klein bottle,
then we end up with the polygon on the right side (but this won’t matter for the rest of the
proof).

The faces of the embedding of G′ are in one-to-one correspondence with the faces
of the embedding of G, and by slight abuse of notation, we identify the faces of the two
embeddings. Sums of face boundaries will always be taken in G, not G′.

Before we proceed with the proof, we need one more piece of notation. Let Q be a sim-
ple curve in Σ′ such that both endpoints lie in the boundary of Σ′. Embed the fundamental
polygon in R2, and let Q′ be a curve in R2 connecting the endpoints of Q and intersecting
the fundamental polygon only in these endpoints. Then Q∪Q′ is a simple closed curve. We
say that a subset of Σ′ lies below Q if it is contained in the bounded region of R2∖(Q∪Q′),
and above Q if it is contained in the unbounded region of R2 ∖ (Q∪Q′); we note the roles
of ‘below’ and ‘above’ may switch depending on the choice of Q′. We say that Q separates
two subsets of Σ′ if one of them lies below Q and one of them lies above Q.

We now distinguish two cases. Either some face boundary (in the embedding of G′)
contains a path Q connecting vertices in two non-consecutive sides of Σ′, or no face bound-
ary contains such a path.
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Figure 2: A path Q separating the fundamental polygon into an area below Q and an area
above Q. The element h consists of the boundaries of the gray shaded regions.

In the first case, note that by swapping the roles of the boundary parts we may assume
that neither of the two endpoints of Q is an interior vertex of px,y or p′x,y . Therefore we may
without loss of generality assume that all edges of px,y which do not lie on Q lie below Q,
and all edges of p′x,y which do not lie on Q lie above Q. Let I be the set of faces whose
interior lies below Q, and let h = k =

∑
f ∈I f , see Figure 2.

Since k = h we immediately obtain x∩k ⊆ h and k∩y ⊆ h. Next, let e ∈ x∩y be an edge
not contained in Q. Then one of the two copies of e lies below Q and the other one does
not. Thus I contains exactly one of the two faces whose boundary e lies in, and therefore
e ∈ h. Finally, consider and edge e ∈ h∖ (x∪y). Since e ∈ h, we know that I contains exactly
one of the two faces whose boundary e lies in, and since e < x ∪ y this implies that e is
contained in Q.

Now assume that we are in the second case, so there is no face boundary that con-
tains vertices in two non-consecutive sides of the fundamental polygon. Without loss of
generality assume that px,y shares a vertex with px and a vertex with py .

Let v0 be the last vertex of px,y (when traversing the path from px to py) such that there
is a face f0 incident to v0 and some vertex of px. Let Ix be the set of faces incident to edges
of px,y before v0. Let Iy be the set of faces incident to edges of px,y after v0. Note that by
tracing the boundary of f0, we obtain a curve Q separating all edges of px,y before v0 from
all edges of px,y after v0. Thus Q also separates the faces in Ix from the faces in Iy , and
face boundaries of faces in Ix and Iy can only intersect in Q.

Let h =
∑

f ∈Ix f and let k =
∑

f ∈Iy f . Since we are in the second case, none of the faces
in Ix∪Iy contains a vertex of p′x,y , p′x, or p′y . Each edge of px,y is contained in precisely one
face boundary in Ix∪Iy ; this implies that x∩y ⊆ h∪k. Next note that Q separates all faces in
Ix from py . Since Q is contained in the boundary of f0 and intersects px, it cannot intersect
py . This implies that no element of Ix contains an edge in py , and thus h∩ y ⊆ x ∩ y ⊆ x.
By definition of v0, no element of Iy contains an edge in px, so x∩ k ⊆ x∩ y ⊆ y. Finally, as
noted above face boundaries of faces in Ix and Iy can only intersect in Q, and since Q is
contained in the boundary of f0 we conclude that h∩ k ⊆ f0.
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4 Basis numbers of graphs on surfaces of higher genus

Lemma 7. Let G be a graph embedded on a surface Σ. Then G contains a subgraph H with Betti
number β(H) = 2 −χ(Σ) such that the cycles of H together with the facial cycles of G generate
C(G). Consequently, bn(G) ≤ bn(H) + 2.

Proof. This is a straightforward consequence of Lemma 5: the graph H consists of a span-
ning tree T of G together with the 2−χ(Σ) edges whose fundamental cycles together with
the facial cycles of G generate the cycle space of G.

In order to use the above lemma recursively, we bound the (orientable) genus of the
graph H . It is straightforward to see that every graph with Betti number 1 is planar. Addi-
tionally, Kuratowski demonstrated that this is also true for all graphs with Betti numbers
2 and 3. Later, Milgram and Ungar generalized Kuratowski’s result.

Lemma 8. [16] Let g(β) denote the largest (orientable) genus occurring among graphs with
Betti number β. Then the following holds:

β

2
+

1
2

(3(β − 1)/(log(β − 1))) ≤ g(β) ≤
β

2
−

β

4logβ
.

Theorem 4. Let G be a graph embedded on a (orientable or non-orientable) surface Σ of genus
g. Then bn(G) = O(log(g)2).

Proof. Let H the graph obtained by Lemma 7. The Betti number of H is at most 2g (in fact
it is at most g if Σ is non-orientable). Next it follows from Lemma 8 that the orientable
genus of H is at most g − g

(2log(2g)) . Let bn(g) denote the largest basis number occurring
among all graphs with orientable genus g. Then by the above discussion

bn(g) ≤ 2 + bn
(
g −

g

2log(2g)

)
.

We use this recursion to show by induction that there exists a positive real number M
and a positive integer g0 such that bn(g) ≤M log(g)2 for all g ≥ g0.

To this end, first let

f (g) = 2log(g) log
(
1− 1

2log(2g)

)
+ log

(
1− 1

2log(2g)

)2

,

and note that
lim
g→∞

f (g) = − 1
ln2

which can be readily verified using de l’Hospital’s rule. Pick 0 < ϵ < 1
ln2 , and let g0 be large

enough such that f (g) < −ϵ for every g ≥ g0. Then choose M ∈ R large enough such that
2 + 2g <M log(g)2 for every g < g0, and such that ϵM ≥ 2.
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The discussion after Lemma 5 shows that bn(g) ≤ 2+2g. Our choice of M implies that
bn(g) ≤M log(g)2 for every g < g0. Now let g ≥ g0, and assume that bn(ℓ) ≤M log(ℓ)2 for
every ℓ < g. Then

bn(g) ≤ 2 + bn(g −
g

2log(2g)
)

≤ 2 +M

(
log

(
g −

g

2log(2g)

))2

≤ 2 +M

(
log(g) + log

(
1− 1

2log(2g)

))2

≤ 2 +M

log(g)2 + 2log(g) log
(
1− 1

2log(2g)

)
+ log

(
1− 1

2log(2g)

)2
≤ 2 +M

(
log(g)2 + f (g)

)
≤ log(g)2 + 2− ϵM
≤ log(g)2,

thus finishing the induction step.

5 Examples and Questions

It follows from Theorem 3 that all non-planar graphs of genus 1 have a basis number of
3, which reproves several known results. For instance, the basis numbers of the Petersen
graph([2]), the Heawood graph(see [2]), the 4-dimensional hypercube(see [4]) are all 3.
Since each of these graphs has genus 1, it follows by Theorem 3 that their basis numbers
are indeed 3.

(a) (b)

Figure 3: Heawood graph
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(a) (b)

Figure 4: Petersen graph

So we ask the following question:

Open Problem 1. What is the smallest possible genus of a graph whose basis number
is strictly greater than 3? In particular, is there a graph with genus 2 and basis number
greater than 3?

We know that the smallest genus in the above problem is either 2, 3, or 4 since the
Tutte 8-cage has basis number is 4, see [2], while its genus is 4, see [7]. Many natural
examples of graphs with genus 2 turn out to have basis number 3. For example, the McGee
graph, also known as the 7-cage, has genus 2 and a basis number of 3, as shown in [2]. The
only complete graph with genus 2 is K8, but its basis number is 3, [19]. The complete
bipartite graph Km,n has genus 2 if and only if

(m,n) ∈ {(3,7), (7,3), (3,8), (4,5), (5,4), (8,3), (3,9), (9,3), (3,10), (4,6), (6,4), (10,3)}

However it has been shown in [15, 19] that the basis number of Km,n is always 3 unless it
is planar.

Another natural follow-up question to the results of this paper is to identify additional
families of graphs with bounded basis numbers. For instance, we may ask the following.

Open Problem 2. Is there an upper bound on the basis number for every minor-closed
graph class?

Open Problem 3. Is there an upper bound on the basis number for the class of vertex
transitive graphs?
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