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Abstract

1 Introduction

A self-avoiding walk on a graph G is a walk that visits each vertex at most once. This
notion was originally introduced in the work of the chemist Flory [12] to model long
polymer chains, and it soon attracted the interest of the mathematical community. The
primary focus has been on studying the asymptotic behaviour of a self-avoiding of a
given length sampled uniformly at random, giving rise to questions that, while simple
to pose, frequently prove challenging to resolve.

A significant amount of research on self-avoiding walks has concentrated on answering
these questions in the case of lattices in Rd, where the model is now well-understood in
dimensions d ≥ 5 by the seminal work of Hara and Slade [30, 31]. The low-dimensional
cases continue to present serious challenges. See [29, 33, 34, 8, 7, 6, 9, 35] and the refer-
ences therein for some of the most important results. For a comprehensive introduction
to the model in this context interested readers can refer to [2, 38].

Over the years, the study of self-avoiding walk beyond lattices has received increasing
attention. The systematic study of self-avoiding walk on general transitive graphs was

∗F. Lehner was supported by FWF (Austrian Science Fund) project P31889-N35.
†C. Lindorfer was partially supported by FWF (Austrian Science Fund) projects P31889-N35 and
DK W1230.

‡C. Panagiotis was supported by the Swiss National Science Foundation and the NCCR SwissMAP.

1



initiated in a series of papers by Grimmett and Li [15, 20, 16, 17, 21, 18, 19, 23], whose
work is primarily concerned with properties of the connective constant. Other works on
self-avoiding walk in this context include [39, 40, 22, 14, 3, 37, 41, 4, 13]. See [23] for a
survey of these results.

In this paper, we consider the self-avoiding walk on quasi-transitive graphs with more
than one end. Such graphs admit a group invariant tree decomposition T = (T,V);
we refer the reader to Section 3 for the precise definition, but note that any such tree
decomposition gives rise a quasi-transitive action of AUT(G) on T . The concept of
tree decomposition was initially introduced by Halin in 1976 [26] and later rediscovered
by Robertson and Seymour [42], playing a pivotal role in proving the Graph Minor
Theorem. Tree decompositions that are invariant under some group action were perhaps
first studied by Dunwoody and Krön [11], drawing inspiration from a method involving
edge cuts introduced by Dunwoody in [10]. In our context, it is crucial that these tree
decompositions are not only invariant under a quasi-transitive group of automorphisms,
but also satisfy some additional properties – see Corollary 3.2 for the precise statement.

One of the first instances in the study of self-avoiding walks on graphs with more than
one end can be found in the work of Alm and Janson [1], where they specifically study
the case of 2-ended graphs. This particular case turns out to be more tractable due to
the fact that the large-scale structure of the graph is similar to that of a line, that is, the
tree T of the tree decomposition is isomorphic to Z. The remaining case of graphs with
infinitely many ends proves to be more challenging, with the currently known results
limited to either the properties of the SAW-generating functions away from its critical
point [36] or to graphs that satisfy additional geometric assumptions [14, 37]. Our
main results answer two fundamental questions in the study of self-avoiding walks in the
case of transitive graphs with infinitely many ends, and more generally, quasi-transitive
graphs G that satisfy the additional technical property that a quasi-transitive group of
automorphisms Γ of G does not fix an end of the tree decomposition T .

Denote by cn the number of self-avoiding walks of length n on G started from some
fixed vertex o. A fundamental quantity in the study of self-avoiding walk is the connective
constant

µw = lim
n→∞

c1/n
n ,

where the fact that the limit exists and does not depend on the starting point follows from
a standard subadditivity argument [28]. The connective constant is not typically known
or expected to take an interesting value, with a notable exception being the hexagonal
lattice, where Duminil-Copin and Smirnov proved in a celebrated paper [9] that µw =√

2 +
√

2. For this reason, it is often more interesting to estimate the subexponential
correction to µnw.

Our first result states that cn grows asymptotically like µnw.

Theorem 1.1. If a quasi transitive graphs G has infinitely many ends, and AUT(G)
does not fix an end of T , then there exist k ≥ 1, a1, a2, . . . , ak > 0 and c > 0 such that
for every q ≥ 1 and r = 0, 1, . . . , k − 1 we have

cqk+r = arµ
qk+r
w (1 +O(e−cq)). (1)
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In particular, there exist C1, C2 > 0 such that

C1µ
n
w ≤ cn ≤ C2µ

n
w (2)

for every n ≥ 1, and we can choose C1 = 1 if G is a transitive graph.

Our next theorem concerns the displacement of a typical self-avoiding walk of length n.
We define Pn to be the uniform measure on self-avoiding walks of length n in G starting
from o, and we write w = (w0, w1, . . . , wn) for a random self-avoiding walk sampled from
Pn. We write dG(·, ·) for the graph distance in G.

Theorem 1.2. If G has infinitely many ends, and AUT(G) does not fix an end of T ,
then there exist constants c, t > 0 such that Pn(dG(w0, wn) ≥ cn) ≥ 1 − e−tn for every
n ≥ 1.

It turns out that if AUT(G) fixes an end of T then it is non-unimodular. To see this,
let x and y be two vertices where y lies in some small separator separating x from the
fixed end ω, but far away from x. Then the size of the orbit of y under AUT(G)x is
bounded by some absolute constant, but the size of the orbit of x under AUT(G)y grows
as we increase the distance between x and y. Transitive graphs whose automorphism
group admits a non-unimodular transitive subgroup were treated by Hutchcroft [32],
who proved that (2) and the conclusion of Theorem 1.2 hold in this context. Thus we
obtain the following result.

Theorem 1.3. Let G be a transitive graph with infinitely many ends. Then there exists
constant C > 0 such that

µnw ≤ cn ≤ Cµnw.

Moreover, there exist constants c, t > 0 such that Pn(dG(w0, wn) ≥ cn) ≥ 1 − e−tn for
every n ≥ 1.

1.1 Tools and proof methods

The proofs of Theorems 1.1 and 1.2 follow an approach similar to that of Alm and
Janson in [1]. Leveraging the tree decomposition, we decompose the graph into finite or
infinite parts, and analyse the restrictions of self-avoiding walks to these parts. These
restrictions give rise to the notions of configurations, shapes, and arrangements. Similar
notions were also introduced in [36], but as we are working in a greater generality (in
particular, parts can be infinite in our setting), some modifications in the definitions
are necessary. Intuitively, each shape describes the restriction of a self-avoiding walk to
a part of the tree decomposition, and each configuration describes how a self-avoiding
walk crosses between two neighbouring parts. Arrangements are collections of compatible
shapes and configurations, that is shapes and configurations whose partial descriptions
of a self-avoiding walk fit together; see Figure 1 for an example.

Precise definitions are introduced in Section 4; for now we point out that there is a
natural bijection between arrangements and self-avoiding walks and hence we may study
arrangements in order to understand self-avoiding walks. We note that even though
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c1 c2 c3 c4 c5s1 s2 s3 s4

Figure 1: A self avoiding walk and its decomposition into configurations and shapes.
Note that every edge of the graph appears in exactly one part. Dashed edges
correspond to detours whose edges do not lie in this part; configurations also
keep track which side the detour lies on. The little arrows pointing in and out
of every configuration indicate the side on which the first and last edge of the
self-avoiding walk lie, respectively.

self-avoiding walks are highly non-Markovian, arrangements satisfy a spatial Markov
property in the sense that compatibility of shapes and configurations is a local property;
this means that in order to study arrangements, we do not have to consider their global
structures, but may focus on the individual configurations and shapes. This observation
is only useful for self-avoiding walks which intersect more than one part, as otherwise
the self-avoiding walk is the same as its restriction to a part and we have not gained any
insight. However, it turns out that the probability that a self-avoiding walk stays within
one part is exponentially small – see Lemma 6.6.

The spatial Markov property of configurations gives rise to a natural recursive struc-
ture which enables us to obtain a system of equations linking the partition functions
of arrangements ‘rooted at’ given configurations. This system can be encoded using
a Jacobian matrix J(z), thereby reducing the problem of determining the asymptotic
behaviour of self-avoiding walk to identifying which irreducible components of J(z) have
spectral radius equal to 1 at the critical point z = 1/µw.

We will distinguish between irreducible components rooted at I-configurations and U-
configurations. Precise definitions will be given later, but intuitively, an I-configuration
means that the corresponding self-avoiding walk starts and ends on different sides, and
a U-configuration between two parts means that the corresponding self-avoiding walk
starts and ends on the same side. For instance, configurations c2 and c3 in the example
in Figure 1 are I-configurations, and configurations c1, c4, and c5 are U-configurations.

As a key step in our approach, we establish that the spectral radius of each component
of U-configurations is strictly smaller than 1 at the critical point. After developing a
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geometric construction that allows us to transform walks, we employ an argument in the
spirit of Kesten’s pattern lemma [33] to show that self-avoiding walks consisting only
of U-configurations are exponentially rare. In particular, this holds for self-avoiding
polygons, walks that start and end at the same vertex and are otherwise self-avoiding.
The latter is known to imply that self-avoiding walk is ballistic [41], and Theorem 1.2
follows.

To deduce Theorem 1.1, we establish that only one irreducible component possesses
a spectral radius equal to 1 at z = 1/µw, namely the persistent I-configurations. Lever-
aging the Perron-Frobenius theorem, we conclude that the spectral radius is a simple
eigenvalue, allowing us to deduce that the self-avoiding walk-generating function has
only simple poles. This, in turn, implies that cn grows asymptotically like µnw.

1.2 Paper organisation

In Section 2 we define the model and gather some relevant definitions. In Sections 3 and
4 we introduce the notions of tree decompositions, configurations, and arrangements
and prove some basic facts about them. In particular, we give a bijection between self-
avoiding walks and certain configurations which will allow us to translate between the
two objects. Next, in Section 5 we introduce the Jacobian matrix J(z) and we establish
the connection with the spectral radius of its irreducible components. Subsequently, in
Section 6 we show the analyticity of J(z) and the partition functions of U-configurations
at the critical point. In Section 7 we prove that the spectral radius of several irreducible
components is strictly smaller than 1 at the critical point. Finally, in Section 8 we finish
the proof of Theorems 1.1 and 1.2.

2 Definitions and basic background

In this section, we gather some definitions that will be used throughout the paper. Most
of our notation is standard, but there is some new notation as well; we hence encourage
even readers familiar with graph theory to skim this section.

2.1 Graph-theoretic definitions

A digraph G consists of a set of vertices V (G) and a set of arcs E(G). Arcs are considered
to be oriented, so every arc e is assigned an initial vertex e− ∈ V (G) and a terminal
vertex e+ ∈ V (G), which are different vertices of G; note that we allow different edges
to have the same initial and terminal vertex. A graph is a digraph G together with a
bijection¯ : E(G)→ E(G) such that ē+ = e−, ē− = e+ and ¯̄e = e. This means that arcs
appear in pairs e, ē having the same endpoints but different direction. We call such an
unordered pair {e, ē} an edge. A digraph is called simple if it contains no arcs which
are different but have the same initial and terminal vertex. In this case we sometimes
abuse notation and write e = e−e+. For a vertex v of G, we denote by E(v) the set of
all arcs with initial vertex v and by deg(v) = |E(v)| the degree of v, that is, deg(v) is
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the number of outgoing arcs of v. A digraph is called locally finite, if all vertices have
finite degree.

2.2 Definition of the model

A walk in a digraph is an alternating sequence p = (v0, e1, v1, . . . , en, vn) of vertices
vi ∈ V (G) and arcs ei ∈ E(G) such that e−i = vi−1 and e+

i = vi for every i ∈ [n]. We
point out that we cannot define a walk purely as a sequence of vertices because there
may be more than one edge connecting the same pair of vertices. The length of the
walk p = (v0, e1, v1, . . . , en, vn), denoted by |p|, is the number n of arcs in p. Its initial
vertex is p− = v0 and its terminal vertex is p+ = vn. For convenience, we include in our
definition the trivial walk (v) of length 0, starting (and ending) at a vertex v and also
the empty walk ∅ consisting of no vertices and no arcs.

A self avoiding walk (or SAW ) is a walk p whose vertices are pairwise different. We
write cn(x) for the number of self-avoiding walks of length n with initial vertex x, and
cn for cn(o), where o is some fixed root vertex in G. We define

µw(x) = lim sup
n→∞

cn(x)1/n.

We recall that on a quasi-transitive graph, the limit exists and does not depend on the
base point [28]. In this case, we will simply write µw.

A self-avoiding polygon is a walk p = (v0, e1, v1, . . . , en, vn) with v0 = vn and with
vi 6= vj for distinct pairs i, j other than the pair 0, n. As in [41], we identify two self-
avoiding polygons which share the same set of edges. We write pn(x) for the number of
self-avoiding polygons of length n with initial vertex x. We also write pn for the number
of self-avoiding polygons of length n starting at the fixed root vertex o. We define

µp(x) = lim sup
n→∞

pn(x)1/n,

and

µp = lim sup
n→∞

(
sup
x∈V

pn(x)

)1/n

.

In certain cases, it is more convenient to work with self-avoiding walks that start at a
vertex x and end at a neighbour vertex of x. We call these walks self-avoiding returns.

2.3 Graph distance and connectedness

Let G be a digraph and let u and v be vertices of G. The distance dG(u, v) from u to
v is the length of the shortest walk with initial vertex u and terminal vertex v. If no
such walk exists, dG(u, v) is infinite. We extend this notation to subsets of V (G) in the
obvious way: the distance of two sets is the minimal distance between elements of these
sets. We also extend this definition to arcs of G. For technical reasons we prefer a pair
of arcs to have distance 0 if and only if the two arcs have the same set of endpoints.
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Thus for two arcs e, f ∈ E(G) we define

dG(e, f) =

{
0 if {e−, e+} = {f−, f+} (as sets),

dG({e−, e+}, {f−, f+}) + 1 otherwise.

Observe that if G is a graph, the distance is symmetric on both V (G) and E(G), however
it is only a metric on V (G) because an arc and its inverse have distance 0.

A digraph G is strongly connected if for any two vertices u, v there is a walk p in
G starting at u and ending at v. Note that this implies that any two vertices in the
digraph are connected by walks in both directions. A strong component of G is a maximal
strongly connected subgraph. If G is a graph, we usually omit the word “strong” in both
notations.

For K ⊆ V (G) we denote by G −K the subgraph obtained from G by removing K
and all arcs incident to K. If removing K disconnects G, then K is called a separating
set. Furthermore, we denote by G[K] the subgraph of G induced by K, that is the graph
G− (V (G) \K).

A walk is closed if its initial and terminal vertex coincide. A closed walk p of length at
least 3 is called a cycle if all vertices except the initial and terminal vertex are pairwise
different; note that closed walks of length 2 are not considered cycles in this paper even
though they use different arcs for both directions. A tree is a connected and cycle free
graph which does not contain any cycle. A tree consisting only of vertices of degree at
most 2 is called a path. We point out that unlike walks, we consider paths to be graphs
and therefore a path has no ‘direction’; a finite path can be seen as the support of a
SAW. Given two disjoint subsets A and B of vertices of a graph G, an A–B-path on G
is a finite path intersecting A and B only in its two endpoints.

2.4 Surgery on walks and multi-walks

Let p be a walk. For two vertices u and v of p we write upv for the maximal sub-walk
of p starting at u and ending at v. If u = v0 or v = vn we omit the corresponding
vertex and denote the sub-walk by pv or up, respectively. We extend this notation
even further. For walks p1, . . . , pn and vertices v0, . . . , vn in the respective walks, we
denote the concatenation (v0p1v1)(v1p2v2) . . . (vn−1pnvn) of the sub-walks vi−1pivi by
v0p1v1p2 . . . pnvn. If the terminal vertex v of p1 coincides with the initial vertex of p2,
we write p1p2 instead of p1vp2, and similarly for concatenations of multiple walks. If
e is an arc connecting the terminal vertex v1 of p1 to the initial vertex v2 of p2, then
we write p1ep2 instead of p1v1(v1, e, v2)v2p2, and similarly for concatenations with more
than two parts.

A multi-walk p is a sequence of vertices and arcs obtained by stringing together the
sequences of vertices and arcs corresponding to walks p1, . . . , pk; the pi are called the
walk components of p. In other words, a multi-walk is a sequence of vertices and arcs,
such that every arc in the sequence is preceded by its initial vertex and succeeded by its
terminal vertex. Note that each of the walks pi is a sequence starting and ending with
a vertex, so that the final vertex of pi and the initial vertex of pi+1 will appear next to
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each other in the sequence p. In fact every appearance of two consecutive vertices in a
multi-walk always marks the start of a new walk component.

2.5 Rays and ends

A ray is a one-way infinite path and a double ray is a two-way infinite path.
Two rays in a graph G are called equivalent, if for every finite set K ⊆ V (G) they end

up in the same component of G −K, that is, all but finitely many of their vertices are
contained in that component. An end of G is an equivalence class of rays with respect
to this equivalence relation. Note that for every finite set K ⊆ V (G) and every end ω,
there is a component H of G−K such that all but finitely many vertices of each ray in
ω are contained in H; in such a case we say that ω lies in H. Two ends ω1 and ω2 of
a graph G are separated by K if they lie in different components of G −K. Halin [24]
showed that an end containing arbitrarily many disjoint rays must contain an infinite
family of disjoint rays, hence the maximum number of disjoint rays contained in an end
ω is well defined and lies in N ∪ {∞}. This number is called the size of the end ω. An
end of finite size is called thin, and an end of infinite size is called thick.

2.6 Graph automorphisms

An automorphism γ of a graph G is a permutation of V (G) and E(G) preserving the
neighbourhood relation in G. More precisely, for every arc e ∈ E(G) it satisfies (γe)− =
γe− and γē = γe. The set of all automorphisms of G forms a group which is called
the automorphism group of G and denoted by AUT(G). For a subgroup Γ ⊆ AUT(G)
we can define an equivalence relation on V (G) by u ∼ v ⇐⇒ ∃ γ ∈ Γ: u = γv. The
equivalence classes with respect to this relation are called orbits, the orbit containing a
vertex v is denoted by Γv. We say that Γ acts (vertex transitively, or simply transitively,
if there is exactly one orbit, and that it acts quasi-transitively, if there are only finitely
many orbits. In this case the graph G is also called (quasi-)transitive. Similarly, we
say that Γ acts arc transitively, if the action of Γ on E(G) has a single orbit and edge
transitively, if it admits a single orbit on the set of edges. A subgraph H of G is called
γ-invariant for γ ∈ AUT(G) if γ(H) = H.

It is well known, that if an infinite, locally finite, connected graph is quasi-transitive,
then it has either one, two, or infinitely many ends. If it has one end, this end is thick.
If it has two ends, both are thin and must have the same size. Finally, if it has infinitely
many ends, then it must have thin ends. These and many more results were given by
Halin in [25].

2.7 Open subgraphs

It will be convenient for us to consider subgraphs which are allowed to contain edges of
which they do not contain both endpoints.

An open subgraph H of G consists of a vertex set V (H) ⊆ V (G) and the set E(H) =
{e ∈ E(G) | e− ∈ V (H)} of all outgoing arcs of V (H) in G. Note that H is uniquely
determined by its vertex set V (H); we say that H is the open subgraph induced by V (H).
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We call H finite, if V (H) is finite. Arcs e ∈ E(H) such that e+ ∈ V (G) \ V (H) are
called boundary arcs of H, and the set of all boundary arcs is denoted ∂E(H). Observe
that an open subgraph is a graph if and only if the set of boundary arcs is empty. The
main idea behind the definition of open subgraphs is the following: for every partition
of the vertex set V (G), the graph G is the disjoint union of the open subgraphs of G
induced by the sets in the partition.

An open subgraph H of G is called open subtree if G[V (H)] is a tree and it is called
open path if G[V (H)] is a path. The leaves of an open subtree are the leaves of the
underlying tree; in other words, when talking about the leaves of an open subtree, we
ignore all boundary edges. For convenience, we let the length of an open path be the
number of vertices it contains. Note that this is not the length of the underlying path—
intuitively we may imagine that an open path contains an additional ‘half edge’ in the
for of an outgoing arc at each of its endpoints. An open star S in G is an open path of
length 1; we point out that the underlying tree of an open star is not a star, but a single
vertex. It is induced by a single vertex s of G, called the center of S and we denote it
by starG(s) or star(s) if the graph is clear. Additionally, for an arc e we write star(e)
for the open subtree with vertex set {e−, e+}. If T is a tree, the (open) cone Ke in T
rooted at the arc e consists of e and the component of T − {e, ē} containing the initial
vertex e− of e.

Let T be a tree and e, f be two different arcs of T . We call e and f linkable if they
point away from each other, that is, they are not contained in the unique path in T
connecting e− and f−. If e and f are linkable, the (unique) link W connecting e and f
is the open path induced by this path: it connects e− and f−, and e and f are boundary
arcs at the two endpoints of W . Observe that whenever e and f are linkable, the length
of their link W is dT (e, f) = dT (e−, f−) + 1.

3 Tree decompositions

Recall that our general proof strategy is to decompose SAWs into configurations and
shapes. In order to be able to do this, we first need to decompose the graph appropriately.
To this end, the goal of the current section is to show that every quasi-transitive graph
with more than one end admits a tree decomposition with certain ‘nice properties’. We
start by giving some definitions.

A tree decomposition of a graph G is a pair T = (T,V), consisting of a tree T and a
function V : V (T ) → 2V (G) assigning a subset of V (G) to every vertex of T , such that
the following three conditions are satisfied:

(T1) V (G) =
⋃
t∈V (T ) V(t).

(T2) For every arc e ∈ E(G) there is a vertex t ∈ V (T ) such that V(t) contains both
endpoints of e.

(T3) V(s) ∩ V(t) ⊆ V(r) for every vertex r on the unique s–t-path in T .
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For every t ∈ V (t), the set V(t) is called the part of t. For an arc e = st of T , the
intersection V(e) = V(s, t) := V(s) ∩ V(t) is called the adhesion set of e. Note that by
definition V(e) = V(ē).

A separation of a graph G is a pair (A,B) of vertex sets such that G[A] ∪G[B] = G,
in other words A ∪ B = V (G), and there are no edges between A \ B and B \ A. The
intersection A ∩ B is called the separator, and |A ∩ B| is called the order of (A,B). A
separation (A,B) of finite order is said to separate two ends ω1 and ω2 if one of them
lies in a component of B \ A, and the other one lies in a component of A \ B. We say
that (A,B) minimally separates ω1 and ω2 if (A,B) has the minimal order among all
separations separating ω1 and ω2. Note that every arc a of the decomposition tree T
corresponds to a separation of G with separator V(a): we call ⋃

t∈V (Ka)

V(t),
⋃

t∈V (Kā)

V(t)


the separation of G induced by a. Clearly, if the separation induced by a is (A,B), then
the separation induced by ā is (B,A).

A tree decomposition (T,V) of G is called Γ-invariant for a group Γ ≤ AUT(G), if
every γ ∈ Γ maps parts onto parts and thereby induces an automorphism of T (which
we denote by γ as well); this clearly induces an action of Γ on T .

The following result which guarantees the existence of a Γ-invariant tree decomposition
is at the heart of our construction. It can be seen as a special case of [11, Theorem 8.1];
simply note that the separations (A,B) with |A ∩ B| = k and infinite sides A and
B correspond to a cut system in the sense of [11], and that the G-tree T (C) can be
interpreted as a tree decomposition whose induced separations are all contained in this
cut system.

Theorem 3.1. Let Γ be a group acting quasi-transitively on a locally finite graph G.
Assume that G has more than one end, and let k be the minimal integer such that there
are two ends which can be separated by removing k vertices. Then there is a Γ-invariant
tree decomposition of G in which every induced separation has order k and separates two
ends.

Corollary 3.2 below describes the tree decompositions we will be working with for the
rest of this paper. It is similar to [27, Corollary 4.3] and [36, Corollary 3.2]. We still
provide a proof for the convenience of the reader since these two results are slightly less
general than ours.

We call a tree decomposition reduced if every induced separation minimally separates
some pair of ends of G, and no two parts corresponding to adjacent vertices in T coincide.
We call it strongly reduced, if in addition every induced separation has order k, where
k is the minimal integer such that there is a pair of ends which can be separated by
removing k vertices.

In order to extract a tree decomposition with the desired properties from the above
theorem, we will need the following construction. Let T = (T,V) be a tree decomposition
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of G, and let F ⊆ E(T ) be a subset of arcs such that ē ∈ F whenever e ∈ F . We define
the contraction T /F = (T/F,V/F ) of the tree decomposition T as follows. The vertices
of T/F are components of T − (E(T ) \ F ) with an arc between two of them if there is
an arc in T (which is necessarily an element of E(T ) \ F ) connecting the corresponding
components. For a component S ∈ V (T/F ) we set V(S) =

⋃
s∈V (S) V(s). It is not hard

to see that this defines a tree decomposition, and that the arcs of the decomposition
tree are precisely the arcs in E(T ) \ F . Moreover, the separations induced by an arc
e ∈ E(T ) \ F and its counterpart in E(T/F ) coincide.

Corollary 3.2. Let Γ be a group acting quasi-transitively on a locally finite graph G.
Then there is a strongly reduced, Γ-invariant tree decomposition (T,V) such that the
action of Γ on T is edge transitive, but not arc transitive.

Proof. We start with the tree decomposition T = (T,V) provided by Theorem 3.1 and
successively change it to satisfy the additional conditions.

First, let e ∈ E(T ) and let F = E(T ) \ (Γe ∪ Γē). Then T /F is easily seen to be
Γ-invariant, and the action of Γ on T/F is transitive on E(T/F ).

We claim that T /F is reduced. Assume that it is not. Then there are two parts
corresponding to adjacent vertices of T/F which coincide. Edge transitivity implies that
all parts of T /F coincide, and thus all adhesion sets coincide with the parts as well.
This cannot be the case since G is infinite, but the adhesion sets of T /F are precisely
the adhesion sets of T corresponding to arcs in Γe and thus they are finite. Finally,
T /F is strongly reduced due to the size of the adhesion sets in the tree decomposition
T provided by Theorem 3.1.

Note that if the action on T/F in the above construction is not arc transitive, then
we are done. Hence we may assume that we have a strongly reduced tree decomposition
T = (T,V) such that the action of Γ on T is arc transitive. Let T ′ be the tree obtained
by subdividing each edge in T precisely once; more formally, V (T ′) = V (T ) ∪ {{e, ē} |
e ∈ E(T )}, and t ∈ V (T ) and {e, ē} are adjacent in T ′ if and only if t and e are incident
in T . Then it is straightforward to check that T ′ = (T ′,V) defines a tree decomposition;
recall that V(st) is defined as V(s) ∩ V(t). This tree decomposition is still Γ-invariant,
since the action on the tree T induces an action on the tree T ′ which takes parts to parts
and adhesion sets to adhesion sets.

Next we show that T ′ is strongly reduced. Let st ∈ E(T ). Then |V(s)| = |V(t)| by arc
transitivity, and consequently |V(s)| > |V(st)| because otherwise the parts corresponding
to s and t would coincide. Moreover, note that every adhesion set of T ′ is also an adhesion
set of T since V(s) ∩ V(st) = V(s) ∩ V(t). This shows that T ′ is strongly reduced.

The action of Γ is not transitive on the arcs of T ′, since it is impossible to map the
set V(s) to the set V(st) because the sets have different cardinalities. To see that the
action is transitive on edges, note that by arc transitivity of the action on T , for any two
arcs e1 = s1t1 and e1 = s1t1 there is γ ∈ Γ such that γe1 = e2 and thus in particular
γs1 = s2. We conclude that γ maps the edge connecting s1 and {e1, ē1} to the edge
connecting s2 and {e2, ē2} in T ′.

We now collect some useful properties of the tree decompositions provided by Corol-
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lary 3.2. For the remainder of this section let Γ be a group acting quasi-transitively
on a locally finite graph G and let T = (T,V) be a tree decomposition as provided by
Corollary 3.2.

Proposition 3.3. For every vertex v ∈ V (G) there are only finitely many s ∈ V (T )
such that v ∈ V(s).

Proof. Assume for a contradiction that v is contained in infinitely many parts. Let
U ⊆ V (G) be a maximal subset such that v ∈ U and there are infinitely many parts
containing all of U . Note that such a maximal subset exists because if a set of vertices is
contained in two parts then by (T3) it is contained in two neighbouring parts. Therefore
any set of vertices which is contained in infinitely many parts must be contained in an
adhesion set, and thus there is an upper bound on the size of such a set.

By (T3), the set {s ∈ V (T ) : U ⊆ V(s)} induces a subtree T ′ of T . This subtree is
infinite because there are infinitely many parts containing U . Define F = E(T ′) and
note that U ⊆ V(e) for every e ∈ F . The separation (Ae, Be) induced by e ∈ F separates
two ends, hence v must have neighbours ae ∈ Ae \ Be and be ∈ Be \ Ae, otherwise it
would be possible to separate the ends by fewer vertices.

By (T2), both endpoints of the arc vae ∈ E(G) must be contained in some part of the
tree decomposition, and since ae /∈ Be this part is V(s) for some s ∈ Ke. Similarly, both
endpoints of the arc vbe ∈ E(G) are contained in a part V(s) for some s ∈ Kē.

Since F contains infinitely many arcs, there is an infinite subset S ⊆ V (T ) such that
V(s) contains a neighbour of v for every s ∈ S. But v only has finitely many neighbours,
so infinitely many parts contain the same neighbour u of v.

Taking an appropriate infinite subset of F (either the arcs of some infinite star, or
arcs on a ray which are sufficiently far apart) we can make sure that for any two vertices
in S, the path connecting them contains at least one vertex of T ′. By (T3) this implies
that u is contained in V(s) for infinitely many s ∈ T ′; this contradicts the maximality
of U .

Corollary 3.4. There is a constant N such that V(e)∩V(f) = ∅ whenever e, f ∈ E(T )
such that dT (e, f) ≥ N .

Proof. By Proposition 3.3 every vertex v ∈ V (G) is contained in only finitely many parts
of the tree decomposition. Moreover G is quasi-transitive, so there is a constant N such
that every v ∈ V (G) is contained in at most N parts. Assume that e and f are arcs of
T such that V(e)∩V(f) contains a vertex v and dT (e, f) ≥ N . Then the unique path in
T connecting e− and f− has at least N + 1 vertices. It follows from (T3) that v ∈ V(t)
for each vertex t of this path, contradicting the fact that every vertex is contained in at
most N parts.

Proposition 3.5. There is a map θ : E(G)→ V (T ) such that for every arc e ∈ E(G)

(i) both endpoints of e are contained in V(θ(e)),

(ii) θ(e) = θ(ē), and
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(iii) γθ(e) = θ(γe) for every γ ∈ Γ.

Proof. For every arc e ∈ E(G), let S(e) = {s ∈ V (T ) : e−, e+ ∈ V(s)}. The set S(e)
is non-empty by (T2), the induced subgraph T [S(e)] is a tree by (T3), and this tree is
finite by Proposition 3.3. Hence it either has a central vertex, or a central edge. In the
former case, we let θ(e) be the central vertex of T [S(e)]. In the latter case, we note that,
because Γ acts edge transitively but not arc transitively, there is an orientation of the
edges such that Γ preserves the chosen orientations. Let θ(e) be the initial vertex of the
central edge of T [S(e)] with respect to this orientation.

Clearly, every γ ∈ Γ which maps e to f also maps S(e) to S(f), and thus maps the
central vertex or edge of T [S(e)] to the central vertex or edge of T [S(f)]. Since γ also
preserves the orientation we picked above, we conclude that γθ(e) = θ(γe) as desired.

Now let E(s) = θ−1(s) ⊆ E(G), where θ is the function given by Proposition 3.5.
Then E(s) is a subset of the edge set of G[V(s)].

Additionally we introduce for every arc e = st of T a new set of virtual arcs E(e) =
E(st), such that every pair of vertices of V(e) is connected by an arc in E(e). By definition
these arcs come in pairs connecting the same vertices but having different direction, so
that V(e) and E(e) form a complete graph. Note that the sets E(e) and E(ē) are disjoint
by definition.

We define the adhesion graph G(e) = (V(e), E(e) ∪ E(ē))(= G(ē)) and note that every
pair of vertices is connected by precisely two arcs, and thus G(e) is not simple unless it
only consists of a single vertex. In order to enhance readability, we usually write E(s, t)
instead of E(st) and G(s, t) instead of G(st).

Finally, we assign to every vertex s of T the part graph

G(s) =

(
V(s) , E(s) ]

⊎
e : e−=s

E(e)

)
.

Again, G(s) generally is not a simple graph since E(s) and the various sets E(s, t) po-
tentially contain arcs with the same endpoints.

Recall that an open subtree S of T consists of a vertex set V (S) and all arcs of T
starting at those vertices such that T [V (S)] is a tree. The part graph induced by S is

G(S) =

 ⋃
t∈V (S)

V(t) ,
⋃

t∈V (S)

E(t) ]
⊎

e : ∂E(S)

E(e)

 .

This is a natural extension of part graphs; it is easy to see that G(star(s)) = G(s).

Proposition 3.6. For every s ∈ V (T ), the setwise stabiliser ΓV(s) acts quasi-transitively
on G(s).

Proof. If u ∈ V(t) does not lie in any adhesion set, then neither does any image of
u under a graph automorphism. In particular, any γ ∈ Γ mapping u to some vertex
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v ∈ V(t) fixes V(t) and thus, under the action of the stabiliser of V(t) there are only
finitely many orbits of vertices in V(t) not contained in any adhesion set.

Whenever γ ∈ Γ fixes s and maps a neighbour t of s onto some other neighbour t′, γ
lies in ΓV(t) and maps the adhesion set V(s, t) onto V(s, t′). By edge transitivity, there
are at most two orbits of adhesion sets contained in V(s) under the action of ΓV(t). As
every adhesion set contains the same finite number of elements, ΓV(t) acts with finitely
many orbits on the vertices which lie in adhesion sets of the tree decomposition.

Proposition 3.7. There is M ∈ N such that for every s ∈ V (T ) and every v ∈ V(s)
there is a neighbour t of s such that dG(v,V(s, t)) ≤M .

Proof. If u and v are vertices whose distance to the nearest adhesion set differs, then
they lie in different orbits with respect to the action of ΓV(s) because ΓV(s) maps adhesion
sets to adhesion sets. Hence, if the distance from a vertex to the nearest adhesion set
was unbounded, then the action of ΓV(s) would have infinitely many orbits on V(s), thus
contradicting Proposition 3.6.

Proposition 3.8. Let e and f be arcs of T . If Γ does not fix an end of T , then there is
an automorphism γ ∈ Γ such that e and γ(f) are linkable.

If e and f lie in the same orbit, then for every odd k we can choose γ such that
dT (e, γ(f)) = k.

Proof. Since the action is transitive on edges but not on arcs, we can choose an ori-
entation of the edges of E which is preserved under the action of Γ. There are two
possibilities: either every vertex has both incoming and outgoing arcs with respect to
this orientation, or all arcs are oriented from one bipartite part to the other.

In the first case note that every vertex has at least two incoming and outgoing arcs
(otherwise Γ would fix an end), and hence there is γ ∈ Γ such that γ(f)− = e− and the
two arcs are linked by the open path of length 1 containing only the vertex e−. In the
second case we can find an open path containing one or two vertices, depending on the
orientations of the arcs e and f .

If e and f lie in the same orbit, then we can choose γ such that dT (e, γ(f)) = 1. Con-
catenation of these open paths shows that we can also choose γ such that dT (e, γ(f)) = k
for any odd k.

Proposition 3.9. Let e, f ∈ E(T ). There is a family of |V(e)| disjoint paths connecting
V(e) to V(f) in G. Moreover, there is N ∈ N such that if dT (e, f) ≥ N , then for any
pair of vertices u ∈ V(e) and v ∈ V(f) there is a u–v-path in G which meets V(e)∪V(f)
only in u and v.

Proof. Let (A,B) and (C,D) be the separations induced by e and f , respectively. It is
clear from the definition of induced separations that we may without loss of generality
assume that A∩D ⊆ V(e)∩V(f). There are ends ωA and ωD which lie in components of
A \B and D \C, respectively. If there were fewer than |V(e)| disjoint paths connecting
V(e) to V(f) in G, then by Menger’s theorem it would be possible to separate these
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two ends by removing fewer than |V(e)| vertices; this contradicts the fact that the tree
decomposition is strongly reduced.

For the ‘moreover’ part, let e′ ∈ E(T ), and let H be a finite connected subgraph of
G containing all vertices in V(e′). By Corollary 3.4 there is some N ′ ∈ N such that
V(f ′) ∩ V (H) = ∅ whenever the distance between e′ and f ′ in T is at least N ′.

Now assume that the distance between e and f is at least N = 2N ′, and let e′ be
an arc lying in the center of the path connecting e and f in T . The union of H and
the collection of disjoint paths from the first part is a connected subgraph of G because
each of the paths must pass through a vertex in V(e′). Vertices in V(e) ∪ V(f) have
degree 1 in this graph because of the choice of N . Hence they cannot appear as internal
vertices of any path, and thus any path in this subgraph meets V(e) ∪ V(f) at most in
its endpoints. Since the graph is connected, it contains the desired paths.

4 Configurations and arrangements

The goal of this section is to utilize tree decompositions to build SAWs from so-called
shapes living on the graphs G(t) for t ∈ V (T ) and configurations living on G(e) for
e ∈ E(T ) where T = (T,V) is a tree decomposition of a quasi-transitive graph G;
usually the one provided by Corollary 3.2. In the case where G is a one-dimensional
lattice, this was already done by Alm and Janson [1]. Here we use a more general
approach similar to the one introduced in [36] for tree decompositions whose parts are
finite. As we also want to treat infinite parts, our definitions and notation are slightly
different from the ones used there.

Let G be connected, locally finite, simple and quasi-transitive, and let T = (T,V) be
a tree decomposition of G. Assume that we have a map θ mapping each edge to a part
containing its endpoints as in Proposition 3.5. Define adhesion graphs and part graphs
for this tree decomposition in the same way as we did after Proposition 3.5 for the tree
decomposition provided by Corollary 3.2. A configuration on an arc e of T with respect
to T is a triple c = (q, x, y), where x, y ∈ {e, ē} are not necessarily different orientations
of e, and q is either a SAW on the graph G(e) or equal to the empty set ∅. In the latter
case c is called the empty configuration.

We call x the entry direction and y the exit direction of c. The inverse of the config-
uration c = (q, x, y) is the configuration c̄ = (q̄, y, x) consisting of the reverse walk q̄ of
q, and which has entry direction y and exit direction x.

A shape on a vertex s of T with respect to T is a SAW p on the part graph G(s). We
say that a shape p on s and a configuration (q, x, y) on an arc e ∈ E(s) are compatible
if the following three conditions hold; the intersection of a walk p with a subgraph is
defined as the subsequence of p consisting of the vertices and edges contained in that
subgraph and therefore this intersection is in general not a walk but a multi-walk.

(C1) p ∩ G(e) = q ∩ G(s).

(C2) If x = e, then p starts in V(e).

(C3) If y = e, then p ends in V(e).
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An arrangement on a finite open subtree S of T with respect to T is a pair A = (P,C)
of maps assigning to every vertex s ∈ V (S) a shape P (s) and to every arc e in E(S) a
configuration C(e) = (Q(e), X(e), Y (e)) = C(ē), where X(e), Y (e) may be arcs in E(S)
or their inverses, such that for s ∈ V (S) the following conditions hold:

(D1) P (s) and C(e) are compatible for every e ∈ E(s).

(D2) There is at most one arc e ∈ E(s) such that X(e) = e. If there is no such arc, then
P (s) starts with a non-virtual arc.

(D3) There is at most one arc e ∈ E(s) such that Y (e) = e. If there is no such arc, then
P (s) ends with a non-virtual arc.

The weight ‖A‖ of the arrangement A = (P,C) on the open subtree S is the total
number of non-virtual arcs contained in all the walks P (s) for s ∈ V (S), so ‖A‖ =∑

s∈V (S) ‖P (s)‖, where ‖P (s)‖ denotes the number of non-virtual arcs in P (s).
The arrangement A is called boring on an arc e ∈ E(S) if X(e) = Y (e) and all

arcs of Q(e) are contained in E(X(e)); in this case we also say that the configuration
C(e) = (Q(e), X(e), Y (e)) is boring. Intuitively, if an arrangement is boring on an arc
e, then this means that all non-trivial shapes lie on one side of this arc; in other words
we won’t lose any information by removing everything that lies on the other side of this
arc from the open subtree. We can thus reduce an arrangement by iteratively pruning
subtrees attached to edges on which the arrangement is boring until all such subtrees are
trivial. We call an arrangement A reduced if it is non-boring on all arcs in E(S)\∂E(S).
Call a reduced arrangement complete if the configuration C(e) is boring and X(e) = ē
for every e ∈ ∂E(S).

Our goal is to establish a relation between (complete) arrangements on finite open
subtrees S of T and self-avoiding walks of length at least 1 on G(S). While our definition
of arrangements differs slightly from the definitions of configurations in [36], we will follow
the same strategy, thus our proofs are quite similar.

The main result of this section is Theorem 4.15 which intuitively states that every
self avoiding walk has an arrangement associated to it and (subject to some technical
conditions) this is a bijection. The technical details are quite messy, hence we start by
providing a very rough sketch of the main ideas for the convenience of the reader. Tree
decompositions can be made coarser by contracting edges, and finer by decontracting
these edges again, and we can define corresponding operations on arrangements; see
Figure 2 for a sketch and Constructions 4.4 and 4.7 for details. Every self-avoiding walk
p consists of finitely many edges. Thus after some finite number of contractions in the
tree decomposition, all edges of p are contained in one part. Hence p is a shape on this
part, and this shape can be extended to a configuration on the open star. Decontracting
this arrangement gives the arrangement on the original tree decomposition corresponding
to p. We may also perform these steps in reverse order to translate an arrangement into
a self-avoiding walk.

In the remainder of this section we provide the details to the above proof sketch. As
a first step, we show that a self avoiding walk whose edges belong to a single part can
indeed be transformed into an arrangement on the open star.
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Lemma 4.1. Let S = star(s) be an open star in T and p be a shape on s.

(i) There is an arrangement A = (P,C) on S such that P (s) = p.

(ii) For e ∈ E(S) the walk Q(e) of the configuration C(e) is uniquely defined by p.

(iii) If p starts in V(f) for some f ∈ E(S) and/or ends in V(f ′) for some f ′ ∈ E(S),
we may choose A such that X(f) = f and/or Y (f ′) = f ′ holds, respectively.

Proof. Let e ∈ E(S). Our first goal is to construct a walk q on G(e) such that (C1) is
satisfied and show that this walk is unique. If p ∩ G(e) = ∅, we set q = ∅ the empty
walk. Otherwise p ∩ G(e) is a multi-walk, let p1, . . . , pn be its walk-components. Set
q = p1e1p2 . . . en−1pn, where ei ∈ E(ē) connects p+

i and p−i+1. It is not hard to check that
(C1) is satisfied. Furthermore, by definition V(e) ⊆ V (G(s)) and E(e) ⊆ E(G(s)) holds,
thus there is no other way to complete q.

Let now P (s) = p and for e ∈ E(S) write Q(e) for the walk q on G(e) constructed
above. If P (s) starts in some adhesion set V(f), we may choose X(f) = f and X(e) = ē
for e ∈ E(S) \ {f}. Otherwise P (s) starts with a non-virtual arc and we have to choose
X(e) = ē for every e ∈ E(S). Similarly, if P (s) ends in some adhesion set V(f) we may
choose Y (f) = f and X(e) = ē for e ∈ E(S)\{f}, otherwise we have to choose X(e) = ē
for every e ∈ E(S). In any case this construction satisfies (D1) – (D3).

The following Lemma formalises the intuition behind the notion of boring configura-
tions. In particular, it shows that it is usually sufficient to work with reduced arrange-
ments, as any non-reduced arrangement can be restricted to a smaller open subtree
without losing any information.

Lemma 4.2. Let S = star(s) be an open star in T , let e ∈ E(S) be one of its arcs and
let c = (q, x, y) be a non-empty boring configuration on e such that x = y = e. Then
there is a unique arrangement A = (P,C) on S such that C(e) = c. Additionally, P (s)
contains no non-virtual arcs and C(f) is boring for every f ∈ E(S) \ {e}.

Proof. By definition of boring configurations the walk q contains only arcs in E(e) and
no arcs in E(ē). Thus q is a shape on s and Lemma 4.1 provides the existence of an
arrangement A = (P,C) on S such that P (s) = q. Additionally q starts and ends in
V(e), so we may choose A such that X(e) = Y (e) = e. Note that this is the only way of
choosing entry and exit directions which is consistent with the given boring configuration
c, and it is easy to check that indeed C(e) = c.

Let f 6= e be an arc of S. Then properties (D2) and (D3) imply X(f) = Y (f) = f̄
because X(e) = Y (e) = e. Also P (s) ∩ G(f) consists only of vertices, so (C1) implies
that all arcs of Q(f) are contained in E(f̄), so that C(f) is boring.

Remark 4.3. Observe that for any arrangement A = (P,C) on a finite open subtree S
of T empty configurations can only occur on boundary arcs of S. This follows from the
fact that if X(e) = e for some interior arc e of S, then the walk P (e−) has to start in
V(e) by (C2) and thus Q(e) is not empty by (C1).
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G(sf )G(f−) G(f+)

G(f)

Contraction

Projection

Figure 2: Sketch of contraction (see Construction 4.4) and projection (see Construc-
tion 4.7) of arrangements with respect to the arc f .

In the next step we will construct coarser tree decompositions from a given tree de-
composition T = (T,V) of G by contracting arcs of T (similar to the construction used
in the proof of Corollary 3.2).

We first recall the definition of contraction in the special case where only a single
edge is contracted, and introduce some additional notation for this special case. Let f
be an arc of T . The tree decomposition T /f = (T/f,V/f) of G obtained from T by
contracting f is given as follows. The vertex set V (T/f) of the decomposition tree T/f
is obtained from V (T ) by replacing f− and f+ by a single new vertex sf and its edge set
E(T/f) is obtained from E(T ) by deleting f and f̄ and for the remaining edges changing
all endpoints in {f−, f+} to the new vertex sf . In other words, we contract f and leave
the names of vertices and edges unchanged wherever possible. Furthermore, the part
corresponding to sf is V/f(sf ) = V(f−) ∪ V(f+), for all other vertices t ∈ V (T/f)
we define V/f(t) = V(t). It is not hard to check that the result satisfies properties
(T1) – (T3), thus being a tree decomposition. The part graph of the new vertex is
G(sf ) = G(star(f)), all other part graphs and adhesion graphs are inherited from T and
stay the same.

Given an arrangement with respect to the tree decomposition T , we can define the
contraction of the arrangement as described below. The construction and its inverse
(Construction 4.7) are sketched in Figure 2.

Construction 4.4. Let A = (P,C) be an arrangement on the open subtree star(f) of
T and let star(sf ) be the open star in T/f centered in the new vertex sf introduced by
contracting f in T . We construct a pair (P/f,C/f) and show that it is an arrangement
on star(sf ). Configurations stay the same; we set C/f(e) = C(e) for every e ∈ E(sf ).
By Remark 4.3 the configuration C(f) is non-empty, let Q(f) = (v1, e1, . . . , ek−1, vk).
By (C1) we have that P (f−) and P (f+) both visit v1, . . . , vk in this order and no other
vertices of V(f). Let a0 = X(f), let ak = Y (f) and for j ∈ [k − 1] let aj ∈ {f, f̄} such
that ej ∈ E(aj). We define the walk P/f(sf ) as the concatenation

P (a+
0 )v1P (a+

1 )v2 . . . vkP (a+
k ).

In other words, P/f(sf ) is obtained from P (f−) and P (f+) by deleting all arcs in
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E(f) and then piecing the walk components of the resulting multi-walks together in a
consistent manner.

Intuitively it should be clear that applying Construction 4.4 to an arrangement yields
an arrangement on the contracted tree decomposition. We will now prove this formally.

Lemma 4.5. The walk P/f(sf ) is a self-avoiding walk on G(sf ) satisfying P/f(sf ) ∩
G(f−) = P (f−)− E(f) and P/f(sf ) ∩ G(f+) = P (f+)− E(f̄). In particular, the set of
arcs contained in P/f(sf ) consists of the arc sets of P (f−)− E(f) and P (f+)− E(f̄).

Proof. Let P/f(sf ) = P (a+
0 )v1P (a+

1 )v2 . . . vkP (a+
k ) as defined above. If one of P (f−)

and P (f+) is the empty walk, then all claimed properties are trivially satisfied, so we
may assume that both walks are non-empty. By (C2), P (X(f)−) must start in v1 and by
(C3), P (Y (f)−) must end in vk, so both P (a−0 )v1 and vkP (a−k ) are trivial. By definition
Q(f) is a walk consisting of arcs e1, . . . ek−1 and by (C1), vjP (a−j )vj+1 consists only

of the virtual arc ej . Combining these observations with the fact that P (f−) can be
decomposed as P (f−) = P (f−)v1P (f−)v2 . . . vlP (f−) we conclude that

P/f(sf ) ∩ G(f−) = P (f−)− E(f),

and similarly for f+. This implies that P/f(sf ) uses no vertex more than once: for
vertices in V(f), this holds by definition, for vertices outside of V(f), this follows from
the fact that P (f−) and P (f+) are self-avoiding. Hence P/f(sf ) is self-avoiding.

Lemma 4.6. The pair A/f = (P/f,C/f) defined in Construction 4.4 is an arrangement
on star(sf ).

Proof. We have already seen that P/f(sf ) is a shape and by definition C/f(e) = C(e)
is a configuration, so we only need to verify (D1) – (D3). Let e ∈ star(sf ) and assume
without loss of generality that e− = f− in T . Then by construction

P/f(sf ) ∩ G(e) = P (f−) ∩ G(e) = Q(e) ∩ G(f−) = Q(e) ∩ G(sf ),

so (C1) holds. Furthermore X(e) = e if and only if P (f−) starts in V(e) and additionally
X(f) = f̄ by (D2) and thus P (f+) starts in V(f). Then by construction the starting
vertices of P/f(sf ) and P (f−) coincide, so P/f(sf ) starts in V(e) and (C2) is satisfied.
Finally either X(f) = f or X(f) = f̄ , so again by (D2) at most one arc e ∈ star(sf ) can
satisfy X(e) = e. If there is no such arc, then each e ∈ E(X(f)−) satisfies X(e) = ē,
so P (X(f)−) starts with a non-virtual arc, so P/f(sf ) starts with a non-virtual arc and
(D2) follows. Finally (C3) and (D3) follow analogously by considering exit directions.

We have managed to contract an arrangement on the open tree star(f) of T to obtain
an arrangement on the open star star(sf ) of T/f . In the next step, we want to do the
converse, projecting a given arrangement A = (P,C) on star(sf ) down to obtain an
arrangement πA = (πP, πC) on star(f), see again Figure 2 for a sketch. For technical
reasons we assume that P (sf ) meets V(f).

19



Construction 4.7. As one might expect, we choose πC(e) = C(e) for e ∈ ∂E(f). By
definition P (sf ) ∩ G(f) is a multi-walk on the adhesion graph G(f). Each of its walk
components consists only of a single vertex vi. Therefore the walk P (sf ) can be writ-
ten as a concatenation q0 . . . qk of sub-walks qi, where q0 = P (sf )v1, qk = vkP (sf ) and
qj = vjP (sf )vj+1 for j ∈ [k − 1]. Note that while q0 and qk may be trivial, all other
qj must have length at least 1. By the basic properties of tree-decompositions, the arcs
of each (non-trivial) qj are contained in exactly one of G(f−),G(f+). Let aj ∈ {f, f̄}
be such that qj ∈ G(a+

j ); in other words, aj marks on which side of f the part con-
taining qj lies. For j ∈ [k − 1] let ej be the (virtual) arc in E(aj) connecting vj and
vj+1. We are able to construct shapes πP (s) for s ∈ {f−, f+} and a configuration
πC(f) = (πQ(f), πX(f), πY (f)) = πC(f̄). The shape πP (s) is given as the concatena-
tion p0p1 . . . pk, where

pj =


qj if a+

j = s

(vj , ej , vj+1) if j ∈ [k − 1] and a+
j 6= s

(vj) if j ∈ {0, k} and a+
j 6= s.

The walk πQ(f) is given as πQ(f) = (v1, e1, v2, . . . , ek−1, vk). Finally, by (D2) there is at
most one e ∈ E(sf ) such that X(e) = e. If such an arc exists, we choose πX(f) ∈ {f, f̄}
such that πX(f)+ = e−. Otherwise P (sf ) starts with a non-virtual arc e0 ∈ E(sf )
and we choose πX(f) ∈ {f, f̄} such that e0 ∈ E(πX(f)+). Similarly if there is an arc
e ∈ E(sf ) such that Y (e) = e we choose πY (f) such that πY (f)+ = e−, otherwise we
choose Y (f) such that the last arc of P (sf ) is contained in E(πY (f)+).

We no prove that applying Construction 4.7 to an arrangement gives an arrangement.

Lemma 4.8. The walks πP (f−) and πP (f+) are self-avoiding walks on G(f−) and
G(f+) satisfying P (sf )∩G(f−) = πP (f−)−E(f) and P (sf )∩G(f+) = πP (f+)−E(f̄).

Proof. By construction πP (f−) consists of all walk-components qj of P (sf ) contained
in G(f−), while those qj not contained in G(f−) are replaced by virtual arcs ej ∈ E(f)
(shortcuts) connecting the same endpoints. In particular πP (f−) is a walk and P (sf )∩
G(f−) = πP (f−)−E(f). Furthermore it is self-avoiding because its sequence of vertices
also occurs in the SAW P (sf ). The statements for πP (f+) follow analogously.

Lemma 4.9. The map πA = (πP, πC) defined in Construction 4.7 is an arrangement
on star(f).

Proof. We show that (D1) – (D3) holds for s = f−, the other vertex f+ is treated
analogously. For e ∈ E(f−)\{f} compatibility follows from the fact that πP (f−)∩G(e) =
P (sf ) ∩ G(e) and

πX(e) = e ⇐⇒ X(e) = e ⇐⇒ P (sf ) starts in V(e) ⇐⇒ πP (f−) starts in V(e).

and the analogue statement for πY (e). We still need to consider the arc f . By con-
struction πQ(f) ∩ G(f−) is a non-empty multi-walk consisting of all virtual arcs ej in
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E(f) such that qj ∈ G(f+), which are exactly the virtual arcs in πP (f−) ∩ G(f). Fur-
thermore πX(f) = f holds either if X(e) = e holds for some arc e ∈ E(f+) \ {f̄} or
if q0 is non-trivial and contained in G(f+). In both cases πP (f−) starts at v0 ∈ V(f).
Similarly, if πY (f) = f , then πP (f−) ends at vk ∈ V(f), so (D1) is satisfied. Again
by construction πX(f) = f can only hold if πX(e) = ē for all e ∈ E(f−) \ {f̄}, so at
most one e ∈ E(f−) satisfies πX(e) 6= e. If there is no such arc, then P (sf ) starts with
a non-virtual arc which is by construction contained in G(f−). In particular πP (f−)
starts with a non-virtual arc, yielding (D2). Similar arguments for the exit direction πY
yield (D3). We conclude that πA is indeed an arrangement on star(f).

Next we show that contraction and projection are inverses of one another. The tech-
nical condition that the shape meets V(f) ensures that all shapes are non-empty. This
is crucial for the bijection between self-avoiding walks and arrangements. Without this
technical condition, every self-avoiding walk would correspond to not just one, but in-
finitely many different arrangements, obtained by attaching arbitrarily many boring
configurations and suitable (often empty) shapes.

Proposition 4.10. Contraction of arrangements A 7→ A/f defines a bijection between
arrangements on the open subtree star(f) of T with respect to T and arrangements on the
open star star(sf ) centered in the contracted vertex sf of T/f with respect to T /f whose
shape on sf meets V(f). Its inverse map is the projection A 7→ πA of arrangements.
Moreover ‖A‖ = ‖A/f‖ holds.

Proof. We have already seen that A 7→ A/f maps arrangements on star(f) to arrange-
ments on star(sf ) and that A 7→ πA maps arrangements on star(sf ) to arrangements on
star(f). By Remark 4.3 the walk Q(f) of the configuration C(f) is non-empty, so by
construction P/f(sf ) intersects V(f). Furthermore by Lemma 4.5 the set of non-virtual
arcs of P/f(sf ) is the disjoint union of the sets of non-virtual arcs of P (f−) and P (f+),
so ‖A‖ = ‖A/f‖ holds.

Let A be an arrangement on star(f). We claim that π(A/f) = A. By construction
π(A/f) is an arrangement on star(f) such that π(C/f)(e) = C/f(e) = C(e) for every
e ∈ E(f). Additionally, by Lemmas 4.5 and 4.8 we have that π(P/f)(f−) satisfies

π(P/f)(f−)− E(f) = P/f(sf ) ∩ G(f−) = P (f−)− E(f).

Any virtual arcs of πP/f(f−) in E(f) must connect the walk-components of πP/f(f−)−
E(f), thus we conclude π(P/f)(f−) = P (f−). In a similar way we obtain π(P/f)(f+) =
P (f+).

It remains to show that π(C/f)(f) = C(f). Equality of the walks π(Q/f)(f) and Q(f)
follows directly from (C1) of compatibility: Both walks π(Q/f)(f) and Q(f) consist of
all virtual arcs of the shapes π(P/f)(f−) = P (f−) and π(P/f)(f+) = P (f+) contained
in G(f) and also the order of these arcs coincide. Finally, if there is some arc e ∈
∂E(f) such that X(e) = e, then also π(X/f)(e) = e and thus (D2) yields X(f) =
π(X/f)(f). Otherwise X(e) = ē holds for all e ∈ E(X(f)+), so by (D2) the walk
P (X(f)+) starts with a non-virtual arc e0 and by (C2) the walk P (X(f)−) starts in
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V(f). In particular, the first arc of P/f(sf ) is e0 and by construction π(X/f)(f) = X(f).
Analogous arguments yield π(Y/f)(f) = Y (f).

The proof that (πA)/f = A holds for every arrangement A = (P,C) on star(sf ) such
that P (sf ) intersects V(e) works similarly and is left to the reader.

Let S be a finite open sub-tree of T . Starting with a given tree decomposition T =
(T,V) of G the process of edge contraction can be iteratively applied to contract each
interior edge of S. In this way S is contracted into an open star centered at a single vertex
sS . We denote the obtained tree decomposition by T /S = (T/S,V/S). As before, an
arrangement A on S will be contracted to an arrangement A/S on the open star star(sS)
of T/S.

Remark 4.11. It is not hard to see that neither the contracted tree decomposition
T /S = (T/S,V/S) nor the contracted arrangement A/S = (P/S,C/S) on star(sS)
depends on the order of edge contractions: Clearly the tree obtained by consecutive
edge contractions does not depend on the order. Additionally V/S(sS) is the union of
all vertices in V(s) for s ∈ V (S) and V/S(t) = V(t) for t ∈ V (T/S) \ {sS}. In particular
T /S does not depend on the order of contractions of internal edge in S.

The configurations on boundary arcs remain the same after each step of contraction of
A, so in particular C/S(e) = C(e) holds for any arc e ∈ E(sS) = ∂E(S). Additionally,
by Lemma 4.5 the walk P (sS) consists of all non-virtual arcs of walks P (s) for s ∈ V (S)
and its direction is uniquely defined. Again, this representation of A/S on S does not
depend on the order of contractions of edges in S.

We immediately obtain the following corollary of Proposition 4.10.

Corollary 4.12. Let S be an open subtree of T . The contraction of arrangements A 7→
A/S defines a bijection between arrangements on S with respect to T and arrangements
on the open star star(sS) centered in the contracted vertex sS of T/S with respect to
T /S whose shape on sS meets V(s) for every s ∈ V (S). Moreover ‖A‖ = ‖A/S‖ holds.

Corollary 4.12 can be used to define a map ϕ translating any arrangement A on an
open subtree S of T to the self-avoiding walk ϕ(A) = P/S(sS) on the graph G(S).
Observe that by definition the length of ϕ(A) is ‖A‖. We call ϕ(A) the walk represented
by A and A a representation of ϕ(A). Theorem 4.13 below shows that every SAW has
some representation.

Let S be a not necessarily finite subtree of T and w be a SAW on G(S). The support
of w in T is the smallest open subtree S′ of S such that all arcs of w are contained in
G(S).

Theorem 4.13. Let T ′ be an open subtree of T and let w be a SAW on G(T ′). Then
there is an arrangement A = (P,C) on the support of w in T representing w. Moreover,
if w starts in V(f) for some f ∈ ∂E(T ′) and/or ends in V(f ′) for some f ′ ∈ ∂E(T ′),
we may choose A such that X(f) = f and/or Y (f ′) = f ′ holds, respectively.

Proof. Let S be the support of w in T . By definition w is a shape on the contracted
vertex sS of T/S, thus Lemma 4.1 (i) provides us with an arrangement A′ = (P ′, C ′)
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on starT/S(sS) such that P ′(sS) = w. By minimality of S the shape w meets V(s) for
every s ∈ V (S). Thus Corollary 4.12 provides us with an arrangement A on S such that
A/S = A′ and this arrangement satisfies ϕ(A) = w. The moreover part follows from
Lemma 4.1 (iii).

We have just seen that every arrangement A on an open subtree S of T represents
a self-avoiding walk ϕ(A) on G(S) and that every such walk is represented by some ar-
rangement. However, in general there can be several different arrangements representing
a single walk. To enumerate SAWs on G, we need each walk to be represented by exactly
one arrangement. This can be done by restricting ourselves to complete arrangements,
as the upcoming Theorem 4.15 shows. For its proof, we need the following auxiliary
result.

Lemma 4.14. Let A = (P,C) be a complete arrangement on an open subtree S of T
and let t be a leaf of S. Then P (t) contains a non-virtual arc.

Proof. Let t be a leaf of S. If S = star(t), completeness implies that X(e) = ē for every
e ∈ E(S). Thus by (D2) the shape P (t) starts with a non-virtual arc.

Suppose now that S is not an open star and let f be the unique arc in E(t) \ ∂E(S).
By completeness of A we have X(e) = Y (e) = ē for every e ∈ ∂E(S). If X(f) = f̄ or
Y (f) = f̄ , then again P (t) has to start or end with a non-virtual arc. Thus we may
assume that X(f) = Y (f) = f . By reducedness C(f) is not boring, so Q(f) has to
contain a virtual arc in E(f̄). Then by compatibility (C1) the shape P (t) contains a
sub-walk p connecting the two endpoints of this walk. Now C(e) is boring for every
e ∈ ∂E(S) and thus p cannot contain any virtual arcs. We conclude that P (t) contains
a non-virtual arc.

Theorem 4.15. Let w be a self-avoiding walk on G. Then there is a unique complete
arrangement representing w.

Proof. We start by constructing a representation of w as in the proof of Theorem 4.15.
Let S be the support of w in T and let S′ = starT/S(sS). Then Lemma 4.1 (i) provides
us with an arrangement A′ = (P ′, C ′) on S′ such that P ′(sS) = w. Note that we
can choose A′ to be complete: The walk w starts and ends with a non-virtual arc and
X ′(e) = Y ′(e) = ē is a valid choice for every e ∈ E(S′). Additionally, all arcs of w
are non-virtual arcs of G(S) = G(sS), thus Q′(e) contains only arcs in E(ē) and C ′(e)
is boring. Corollary 4.12 provides us with an arrangement A on S such that A/S = A′

and thus ϕ(A) = w. By Lemma 4.2 whenever C(e) is boring for some arc e of S, P (s)
cannot contain any non-virtual arcs for every s ∈ V (KX(e))∩ V (S). By minimality of S
we conclude e ∈ ∂E(S). Thus A is complete.

For the uniqueness part, observe that whenever A is a complete arrangement on a
subtree S of T representing w, by Lemma 4.14 this subtree must be the support of w.
By Corollary 4.12 each A corresponds to a unique arrangement A/S on S′ and clearly
A/S must be complete. By completeness X/S(e) = Y/S(e) = ē holds for every e ∈ E(S′)
and by Lemma 4.1 (ii) the configuration C/S(e) is uniquely defined by w = P/S(sS), so
A/S is uniquely defined by w.
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Remark 4.16. For any complete arrangement A on a finite open subtree S of T there
is exactly one vertex s0 of S such that X(e) = ē for every e ∈ E(s0). This can be easily
seen by double counting the set {(s, e) | e− = s and X(e) = e} and using (D2) and
that configurations on boundary arcs e satisfy X(e) = ē. We call s0 the source of the
complete arrangement A. Similarly there is a unique vertex t0 of S such that Y (e) = ē
for every e ∈ E(t0) and this vertex is called the target of A.

Lemma 4.17. Let A be a complete arrangement representing a SAW w on G. The part
graph G(s0) of the source s0 of A contains the first arc of w. Similarly, the graph G(t0)
of the target t0 contains the final arc of w.

Proof. Observe that for any t ∈ V (T ) by Construction 4.7 the walk P (t) visits exactly
the vertices in w∩V(t) in the same order as w. Let t be a vertex of T such that w− ∈ V(t)
and let s be the neighbour of t on the unique s0–t-path and let e = st. Then X(e) = e,
so by (C2) the initial vertex w− of P (t) must be in E(e) and thus w− ∈ V(s). Induction
yields w− ∈ V(s0). By (D2) the first arc of P (s0) is non-virtual and thus coincides with
the first arc of w. The statement about the target follows analogously.

5 A generating system of equations for configurations

Throughout this section let G be a locally finite connected graph and let Γ be a group
acting quasi-transitively on G. We always assume that Γ does not fix an end of G.
Corollary 3.2 provides us with a Γ-invariant tree decomposition (T ,V) of G such that
there are exactly two Γ-orbits on the arcs of T . More precisely, we can pick an arc e0

such that every arc e of T either lies in the orbit Γe0 or in the orbit Γē0. We denote by
ρ(e) ∈ {e0, ē0} the respective representative of the arc e.

Two non-boring configurations c = (q, x, y) and c′ = (q′, x′, y′) on the arcs e and e′ of T
are Γ-equivalent if (q′, x′, y′) = (γ(q), γ(x), γ(y)) holds for some γ ∈ Γ, where γ(q) refers
to the natural extension of γ to the virtual edges. Clearly this defines an equivalence
relation on the set of configurations on E(T ). Let C be a set of representatives chosen
in a way such that each c ∈ C is a non-boring configuration on the arc e0. Observe
that the set C has finite cardinality because the adhesion graph G(e0) is finite and thus
carries only finitely many different configurations. For any non-boring configuration c
we denote its representative in C by ρ(c).

Let c = (q, x, y) be a non-boring configuration. A c-completion is an arrangement
A = (P,C) on a finite open sub-tree S of Kx containing x such that C(x) = c and C(e)
is boring on e ∈ E(S) if and only if e ∈ ∂E(S) \ {x}. We define the generating function
of c-completions as

Fc(z) =
∑

A c-completion

z‖A‖,

Let rc denote the radius of convergence of the generating function Fc(z) and let R =
minc∈C rc.
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The main goal in this section is to find a system of equations for the generating
functions of c-completions and study this system to obtain properties of these generating
functions.

For an arrangement A on an open subtree S of T and a vertex s of S, we denote
by nb(A, s) the set of arcs e ∈ E(s) such that A is non-boring on e. Observe that by
definition nb(A, s) is a finite set.

Let c = (q, x, y) be a configuration and let A = (P,C) be a c-completion on the
open cone Kx. Then we can decompose A into its restriction AS on the open star
S = star(x−) and C(e)-completions Ae on the cones Kē for all outgoing arcs e of S
different from x. Observe that Lemma 4.2 implies that whenever C(e) is boring, the
arrangement Ae is uniquely given by C(e) and does not contain any non-virtual arcs.
Thus it is possible to recursively build all c-completions by completing arrangements A
on star(x−) satisfying C(x) = c with C(e)-completions for all e ∈ E(x−) \ {x} carrying
non-boring configurations C(e). Thus we obtain

Fc(z) =
∑

A arr. on star(x−):
C(x)=c

z‖A‖
∏

e∈nb(A,x−)\{x}

FC(e)(z). (3)

It follows from the definitions that Fc(z) = Fc′(z) whenever c and c′ are Γ-equivalent
configurations. Write F(z) = (Fc(z))c∈C . Then the equations above can be rewritten by
replacing every Fc(z) by Fρ(c)(z) to obtain

Fc(z) = Pc(z,F(z)), c ∈ C. (4)

Here
Pc(z,y) =

∑
n∈N|C|0

ac,n(z)yn, c ∈ C,

is a formal power series in the variables y = (yc)c∈C whose coefficients are formal power
series ac,n(z) in the variable z given by the sums in equation (3), respectively, where

yn =
∏
c∈C

ync
c

for an exponent vector n = (nc)c∈C .
Let c ∈ C be a non-boring configuration. By Lemma 4.14 each c-completion contains

at least one non-virtual arc, so that Fc(0) = 0. Furthermore we may assume without
loss of generality that Fc(z) is not identically zero, that is, that there exists at least one
c-completion. If this is not the case for some configuration c ∈ C, we remove c from
C and replace every occurrence of yc in Pc(z,y) by 0. Observe that after this process
equations (4) remain valid.

Consider the Jacobian matrix

J(z,y) =

(
∂Pc
∂yc′

(z,y)

)
c,c′∈C

.
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Let c = (q, x, y) and c′ be two non-boring configurations. A c–c′-completion is an
arrangement A = (P,C) on a finite open subtree S of Kx containing x such that C(x) = c
and there is an arc f ∈ ∂E(S) such that ρ(C(f)) = c′ and C(e) is boring on e ∈ E(S)
if and only if e ∈ ∂E(S) \ {x, f}. The arc x is the source arc of the c–c′-completion A
and f is the target arc. The length of A is the distance between the source arc x and
the target arc f . We denote by A(c, c′, n) the set of c–c′-completions of length n.

Let us now take a closer look at the entries of J(z,F(z)). To simplify notation, for any
expression φ(z,y) depending on the variable z and the vector y, we denote its evaluation
at y = F(z) by

φ(z) = φ(z,F(z)).

Lemma 5.1. Let c, c′ be non-boring configurations. Then

(J(z))c,c′ =
∑

A∈A(c,c′,1)

z‖A‖.

Proof. Let c = (q, x, y). From equations (3) and (4) we obtain

Pc(z,y) =
∑

A arr. on star(x−):
C(x)=c

z‖A‖
∏

e∈nb(A,x−)\{x}

yρ(C(e)).

An application of the Leibniz rule provides

∂Pc
∂yc′

(z,y) =
∑

A arr. on star(x−):
C(x)=c

z‖A‖
∑

f∈nb(A,x−)\{x}:
ρ(C(f))=c′

∏
e∈nb(A,x−)\{x,f}

yρ(C(e))

By definition every c–c′-completion A of length 1 consists of an arrangement As =
(Ps, Cs) on star(x−) such that there is an arc f ∈ E(x−) \ {x} with ρ(Cs(f)) = c′ and
Cs(e)-completions Ae for all e ∈ nb(A, x−) \ {x, f}. Conversely, every such As together
with some Cs(e)-completions Ae forms a c–c′-completion. Finally note that in this case

‖A‖ = ‖As‖+
∑

e∈nb(A,x−)\{x,f}

‖Ae‖ .

We conclude

(J(z))c,c′ =
∑

A∈A(c,c′,1)

z‖As‖
∏

e∈nb(As,x−)\{x,f}

Fρ(Cs(e)) =
∑

A∈A(c,c′,1)

z‖A‖.

Observe that a c–c′′-completion A1 and a c′′–c′-completion A2 can be concatenated
to obtain a c–c′-completion whose length is the sum of the lengths of A1 and A2. In
particular, the matrix counting c–c′-completions of length n can be obtained as the n-th
power of the matrix of c–c′-completions of length 1.
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Corollary 5.2. Let c, c′ be non-boring configurations and denote A(c, c′, n) the set of
c–c′-completions of length n. Then

(J(z)n)c,c′ =
∑

A∈A(c,c′,n)

z‖A‖.

The dependency digraph D of the system of equations (4) is given as follows. Its vertex
set is the set C of representatives of configurations and there is an arc from c = (q, x, y)
to c′ if ∂Pc

∂yc′
(z) is non-zero. In this case we also write c→ c′. Recall that we removed all

c such that Fc(z) is identically zero from C. Therefore we have that c → c′ if and only
if yc′ occurs in the power series Pc, that is, if ac′,n(z) > 0 for some n = (nc)c∈C with
nc′ > 0. By definition this is the case if and only if there is a c-completion A = (P,C)
such that ρ(C(f)) = c′ holds for some f ∈ E(x−) \ {x}.

The following lemma follows readily from the definitions.

Lemma 5.3. If c→ c′ for two configuration c, c′ ∈ C, then rc ≤ rc′.

We further classify configurations as follows. A configuration c = (q, x, y) is called
an I-configuration if x 6= y and it is called a U-configuration if x = y. We denote
the respective subsets of C by I and U , so that C = I ∪ U is a disjoint union. We
call c ∈ I simple, if q consists only of a single vertex and denote by Is the set of
simple configurations. Furthermore, we call c ∈ I persistent, if there are two simple
configurations c1 and c2 such that c lies on a walk from c1 to c2 in D. Note that this
is equivalent to the existence of a c1–c2-completion such that there is some arc e of the
shortest walk from the source arc to the target arc for which C(e) is equivalent to c.
Non-persistent I-configurations are called transient and we denote by Ip and It the sets
of persistent and transient configurations, respectively. Note in particular that all simple
configurations are persistent.

Lemma 5.4. Let e, f ∈ E(T ). Then there is an arc f ′ ∈ Γf such that for every pair of
simple configurations c = (q, x, y), c′ = (q′, x′, y′) with entry directions x = e and x′ = f̄
there is a c–c′-completion with target arc f ′.

Proof. Let N be the constant defined in Proposition 3.9. Proposition 3.8 provides an
automorphism γ ∈ Γ such that e and f ′ = γ(f) are linkable and have distance at least N .
Let u be the single vertex of q and v be the single vertex of γ(q′). Then Proposition 3.9
provides us with a SAW w connecting u and v and meeting V(e) and V(f ′) only in these
vertices.

Theorem 4.13 provides us with a representation A = (P,C) of the SAW w on its
support S such that X(e) = e and Y (f ′) = f ′. It is easy to check that this representation
is a c–c′-completion with target arc f ′.

Remark 5.5. The previous lemma immediately implies that rc ≤ 1 holds for the radius
of convergence rc of Fc for every simple configuration c ∈ Is. Indeed, the walk repre-
sented by a c-c′-completion is also represented by a c-completion, thus Fc(z) contains
infinitely many non-zero coefficients.
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Lemma 5.6. The dependency-digraph D satisfies the following conditions.

(i) There are no arcs from U-configurations to I-configurations.

(ii) Each strong component is contained in one of the sets Ip, It and U . We call
components persistent, transient or U-components depending on the type of config-
urations they contain.

(iii) The set Ip is a strong component of D.

Proof. Let c = (q, x, y) ∈ C be a U-configuration and let A = (P,C) be an arrangement
on star(x−) such that C(x) = c. As c is a U-configuration, x = y ∈ E(x−), so by
(D2) and (D3) in the definition of arrangements X(f) = Y (f) = f̄ holds for every
f ∈ E(x−) \ {x}, thus C(f) is a U-configuration. In particular D cannot contain arcs
from U-configurations to I-configurations.

Lemma 5.4 shows that all simple configurations are contained in the same strong
component of D. Furthermore, persistent configurations are defined to lie on paths
between simple configurations, so all of them are contained in this component, showing
that Ip is contained in a single strong component.

Now let K be an arbitrary strong component in D. If K contains a U-configuration,
then (i) implies that K cannot contain any I-configuration, so K ⊆ U .

Next assume that K contains a transient configuration. Recall that by definition a
transient configuration c cannot lie on a c1–c2-path in D for two simple configurations
c1, c2. Hence, if K contains a transient configuration, it cannot contain a simple config-
uration, so in this case K ⊆ It.

Finally, if K contains neither U-configurations nor transient configurations, then it is
contained in Ip. Since all of Ip is contained in a single strong component we conclude
that in this case K = Ip, in particular Ip is a strong component.

The submatrix obtained from J(z) by restricting the index set to some subset K ⊂ C
is denoted by JK(z). It follows directly from Lemma 5.3 that if K is a strong component
of D, the radii of convergence rc coincide for all c ∈ K. We denote the common value
by rK. Let c ∈ K and let c′ ∈ C such that c → c′. Then Lemma 5.3 implies that Fc′(z)
is well-defined and finite for 0 ≤ z < rK. Hence JK(z) is well defined for 0 ≤ z < rK.
Denote the spectral radius of the matrix JK(z) by λK(z).

Let us now state some properties of JK(z) and λK(z) which will be important later
on.

Lemma 5.7. For each strong component K of D the following statements hold.

(i) All entries of JK(z) are continuous, non-negative, and non-decreasing in [0, rK).

(ii) The spectral radius λK(z) is continuous and non-decreasing in [0, rK). Additionally,
λIp(z) is strictly increasing in [0, rIp)

(iii) JK(0) is nilpotent, in particular λK(0) = 0.
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Proof. By Lemma 5.1, the entries of the matrix JK(z) are generating functions counting
c–c′-completions of length 1 for c, c′ ∈ K. In particular they are continuous, non-negative
and non-decreasing within their radius of convergence and the same holds for the spectral
radius λK(z).

By Proposition 3.9, there are two persistent configurations c, c′ such that (JIp(z))c,c′

is non-constant and thus strictly increasing in z. Irreducibility of JIp(z) implies that
also λIp(z) is strictly increasing in z.

To see that (iii) holds, note that by Corollary 3.4 for n large enough, any arcs e, f ∈
E(T ) of distance at least n satisfy V(e) ∩ V(f) = ∅. By Corollary 5.2 the entries
of JK(z)n are generating functions counting c–c′-completions A of length n. But the
walk represented by such an arrangement A connects V(e) and V(f) and thus must
be non-trivial. In particular the respective entry of JK(z)n has no constant term, so
JK(0)n = 0.

Our aim now is to show that JK(z) has finite entries at z = rK for every strong
component K.

Lemma 5.8. For each strong component K of D, the matrix JK(rK) is well-defined and
has finite entries. Moreover, λK(z) < 1 for every 0 ≤ z < rK and λK(rK) ≤ 1.

In order to prove this lemma, we first need the following result.

Lemma 5.9. Let A = (aij) ∈ Rn×n be an irreducible matrix such that aij ≥ 0 for every
i, j ∈ {1, 2, . . . , n} and λ(A) ≤ 1. Let also M = max{aij} and m = min{aij | aij > 0}.
Then M ≤ m−n.

Proof. Consider some i0, j0 such that ai0j0 = M . By the irreducibility of A, there are
l ≤ n and indices z1 = j0, z2, . . . , zl = i0 with azizi+1 > 0 for every i = 1, 2, . . . , l − 1.

The entry a
(l)
i0i0

of the matrix Al satisfies

a
(l)
i0i0
≥ ai0j0

l−1∏
i=1

azizi+1 ≥Mml−1.

Since Al has non-negative entries and λ(Al) = λ(A)l ≤ 1, we have by the monotonicity
of the spectral radius that

1 ≥ λ(Al) ≥ λ(B) = Mml−1,

where B is the matrix with bi0i0 = Mml−1, and all other entries 0. In particular we see
that m ≤ 1, so M ≤ m−l+1 ≤ m−n.

For each strong component K of D, let FK(z) = (Fc(z))c∈K. Additionally for y =
(yc)c∈K let Pc′,K(z,y) be obtained from Pc′(z, (yc)c∈C) by substituting yc = Fc(z) for
each c ∈ C \ K.

We are now ready to prove Lemma 5.8.
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Proof of Lemma 5.8. Let us start by showing that

λK(z) < 1 for every 0 ≤ z < rK. (5)

We will argue as in [5, Proposition 4].
Assume for a contradiction that λK(z0) ≥ 1 for some 0 ≤ z0 < rK. Since λK(0) = 0

and λK(z) is continuous, there is some 0 < s ≤ z0 < rK such that λK(s) = 1. By the
Perron-Frobenius Theorem for non-negative irreducible matrices, λK(s) = 1 is a positive
simple eigenvalue of JK(s) for which we can find a a left eigenvector x = (xc)c∈K with
only positive entries. Define the function

F(z,y) =
∑
c∈K

xc (yc − Pc,K(z,y)) ,

where y = (yc)c∈K. Note that for ζ = (s, FK(s)) there is some β ≥ 0 such that

F(ζ) = 0,
∂F
∂z

(ζ) = −β, ∂F
∂yc

(ζ) = 0.

We claim that β is strictly positive, that is, that there is some c ∈ K such that Pc,K(z,y)
depends non-trivially on z. Recall that by Lemma 4.14 every c′-completion contains a
non-virtual arc, and thus Fc′(z) depends on z for every c′. If the strong component K
of D has an outgoing arc cc′, then Pc,K includes Fc′(z), which depends on z. Otherwise
for c ∈ K, the function Pc,K(z,y) = Pc(z,y) does not depend on any yc′ for c′ ∈ C \ K
and thus must depend on z, because Fc(z) = Pc(z,F(z)) does.

Taylor expanding around ζ, replacing y by FK(z), and using that Fc(z) = Pc,K(z, FK(z))
we obtain

β(s− z) = O
(
(s− z)2

)
,

which is a contradiction. This proves (5).
We will now show that JK(rK) has finite entries. Let us write m(z) for the smallest

positive entry of JK(z), and consider some 0 < z1 < rK. Then Jc,c′(z) ≤ m(z)−|K| ≤
m(z1)−|K| for every c, c′ ∈ K and every z1 ≤ z < rK by Lemma 5.9 and the monotonicity
of m(z). It follows from the monotone convergence theorem that Jc,c′(rK) is well-defined
and Jc,c′(rK) ≤ m(z1)−|K| for every c, c′ ∈ K, which proves the first assertion of the
lemma.

For the second assertion, it remains to show that λK(rK) ≤ 1. This follows from (5)
by taking the limit as z goes to rK.

6 Analyticity at the critical point

Keeping all definitions and assumptions from the previous section, the goal in this section
is to prove the following analyticity results; recall that R = minc∈C rc is the minimal
radius of convergence of any Fc(z).

Proposition 6.1. For every c ∈ U , Pc(z,y) is analytic at (z,y) = (R,F(R)).

30



Proposition 6.2. We have that JI(z,y) is analytic at (z,y) = (R,F(R)).

We will prove Propositions 6.1 and 6.2 in a series of lemmas. We start by showing
that Fc(R) is finite for every c ∈ U .

Lemma 6.3. If T has more than two ends and Γ does not fix an end of T , then Fc(R)
is well-defined and finite for every c ∈ U .

Proof. First note that every c ∈ U is by definition non-boring and thus contains a virtual
arc in E(x̄). If c contains k ≥ 2 virtual arcs e1, . . . ek ∈ E(x̄), then Fc(z) ≤

∏k
i=1 Fci(z),

where ci = (qi, x, y) is the configuration such that qi is the walk of length 1 with the
single arc ei. It thus suffices to prove the assertion for every c = (q, x, y) ∈ U that
contains exactly two vertices and a virtual arc in E(x̄) connecting those vertices. Let c
be such a configuration.

We claim that there are an open subtree S of T , an arrangement A = (P,C) on S and
three arcs f, e1, e2 ∈ ∂E(S) satisfying the following conditions:

(i) C(f) = c and X(f) = f̄ .

(ii) C(e1) and C(e2) are simple I-configurations such that X(e1) = e1 and Y (e2) = e2.

(iii) C(e′) is boring if and only if e′ ∈ ∂E(S) \ {f, e1, e2}.

If such an arrangement A exists, then A together with a c-completion A′ forms a C(e1)–
C(e2)-completion, whose length n is the distance of e1 and e2. In particular

(Jp(R)n)C(e1),C(e2) ≥ R‖A‖Fc(R),

so Lemma 5.8 implies that Fc(R) is finite.
For the proof of the claim we start by picking f = x̄. Furthermore let e1, e2 be two

different arcs having the same distance to f . We pick e1 and e2 such that the sets V(f),
V(e1) and V(e2) are pairwise disjoint.

Let q = (u, e, v) ∈ V(f). As in the proof of Proposition 3.9 we can find two disjoint
V(f)–V(e2)-paths πu and πv in G, starting at u and v, respectively. Moreover, we find a
V(f)–V(e1)-path π in G starting at u. Let u′ be the endpoint of π in V(e1). We construct
a walk w on G(Kf ) as follows. Start at u′ and follow π until its first intersection with
one of the paths πu and πv. If we reached πu, we follow it until u, add the arc e to
reach v and follow πv from v to V(e2). Otherwise we follow πv until v, add ē to reach
u and follow πu to reach V(e2). In this case we reverse the obtained walk and exchange
e1 and e2. It is now easy to check that in both cases we end up with a SAW w on
G(Kf ) connecting V(e1) and V(e2) and containing the arc e. Let S be the support of w.
By construction the arcs e1, e2 and f are in ∂E(S). Theorem 4.13 provides us with a
representation A = (P,C) of w such that X(e1) = e1 and Y (e2) = e2. It is easy to check
that A satisfies conditions (i)–(iii).

The following construction is essential in the upcoming proofs; it is sketched in Fig-
ure 3.
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ge(u)

ge(u
′)

u
u′

Figure 3: Reflection-extension with splitting point u. The last part of the original walk
is drawn in gray, the modified walk is drawn in black. Note that the distance
between u′ and ge(u

′) is bounded by an absolute constant, so the increase in
length will become negligible when the length of the original walk is large.

Construction 6.4. Let a ∈ {e0, ē0} be a representative arc of the action of Γ on E(T )
and fix an odd integer N which is larger than or equal to the constant of Proposition 3.9.
Then Proposition 3.8 provides us with an automorphism γa such that a and γa(a) are
linkable and have distance N . By Proposition 3.9 for any v ∈ V(a) there is a v–γav-path
πa,v in G meeting V(a) ∪ V(γaa) only in its endpoints.

Moreover, for every e ∈ E(T ) fix an automorphism he mapping e to its representative
ρ(e) ∈ {e0, ē0}.

Let e ∈ E(T ) and w be a self-avoiding walk on G(Ke) not intersecting V(e). A
reflection-extension of w through e is constructed as follows. Let u be a vertex of w
such that dG(u,V(e)) = dG(w,V(e)). We apply ge := h−1

e ◦ γhe(ē) ◦ he to the sub-walk of
w starting at u. Next we connect u to V(e) with a geodesic in G, which by definition
intersects V(e) only in a single vertex u′. Furthermore we connect ge(u) to V(ge(e))
with the image of the latter geodesic under ge. Finally, we connect u′ to g(u′) with
h−1
e (πhe(ē),he(u′)). Note that by our choice of the vertex u, the object we thus obtain is

a SAW; we denote by Refle(w) the set of all possible reflection-extensions of w through
e. The vertex u is called splitting point of the reflection-extension.

Lemma 6.5. Let e ∈ E(T ) and let w1 and w2 be different self-avoiding walks on G(Ke).
Then Refle(w1) ∩ Refle(w2) = ∅.

Proof. We show that the walk w can be uniquely reconstructed from any w′ ∈ Refle(w)
provided that e is known. Note that by construction w′ consists of 5 parts: the sub-walk
of w up to the vertex u, followed by a geodesic πu from u to u′ ∈ V(e), a walk from u′ to
ge(u

′), the image of πu under ge, and the image of the sub-walk of w starting at u under
ge. In particular, given w′ it is easy to identify u as the first vertex of w′ such that ge(u)
is also contained in w′. Then w is obtained as the concatenation of the sub-walk of w′

up to u and the image of the sub-walk of w′ starting at ge(u) under the map g−1
e .

32



Our next goal is to show that there are exponentially fewer SAWs that stay withing
a part than SAWs that use vertices in multiple parts. Consider some part V(t) and
some vertex o ∈ V(t). We define cn(o, t) to be the number of SAWs w on G of length n
starting at o visiting only vertices in V(t). Let µo,t = lim sup cn(o, t)1/n.

Lemma 6.6. If Γ does not fix an end of T , then µo,t < 1/R for every t ∈ V (T ) and
o ∈ V(t).

Proof. The statement is trivially satisfied if V(t) is finite, so we henceforth assume that
V(t) is infinite. Consider a SAW w of length n starting at o and visiting only vertices in
V(t). We will construct several SAWs starting at o that do not stay in V(t) by applying
Construction 6.4 and then compare the corresponding generating functions.

We first need to define a suitable set of adhesion sets. Let M > 0 be the constant of
Proposition 3.7. Let also B(w) be a set of arcs of E(t) such that 1 ≤ dG(V(e), w) ≤ M
for every e ∈ B(w), dG(V(e),V(f)) > 2M for every distinct e, f ∈ B(w), and B(w) is
maximal with respect to the latter property.

We now associate to each e ∈ B(w) a vertex ue = ue(w) of w such that dG(ue,V(e)) =
dG(w,V(e)) ≤ M , and we denote the set thus obtained by U . Note that the vertices
ue are distinct because dG(V(e),V(f)) > 2M for every distinct e, f ∈ B(w). Using the
ordering of the vertices ue coming from the ordering of the vertices of w, we order the
elements of B(w).

We claim that |B(w)| ≥ m := n/∆4M+2D, where ∆ is the maximal vertex-degree in G
and D is maximal distance (in G) between two vertices in the sam adhesion set. Indeed,
let v be a vertex of w, and f ∈ E(t) such that dG(v,V(f)) ≤M . Then

dG

V(f),
⋃

e∈B(w)

V(e)

 ≤ 2M

by the maximality of A(w). Hence dG(v, U) ≤ 4M + 2D. This implies that the balls of
radius 4M + 2D around the vertices in U cover w. Since each ball of radius 4M + 2D
has size at most ∆4M+2D, the claim follows.

Let ε ∈ (0, 1) be a small constant to be defined later, and consider a set H ⊆ B(w)
of cardinality k = bεmc. We write ei = ei(H) for the ith element of H. We will
successively apply Construction 6.4 to w. More precisely, let w1(H) ∈ Refle1(w) be
a reflection-extension of w through e1 with splitting point ue1 and let g = ge1 be the
automorphism applied to the second part of w in the reflection-extension process.

Consider the second element e2 ∈ H, and note that g(ue2) minimizes dG(v,V(g(e2)))
among the vertices v of w1(H), since

dG (V(g(e1)),V(g(e2))) > 2M.

Thus there is a reflection-extension w2(H) ∈ Reflg(e2)(w1(H)) of w1(H) through g(e2)
with splitting point g(ue2). Continuing in this way, we obtain a sequence of SAWs
w1(H), . . . , wk(H). Note that wk(H) has length between n and n+k` for some constant
` > 0 independent of w.
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Varying H over all possible subsets of B(w) of cardinality k, we obtain a map (w,H) 7→
wk(H). We claim that this map is injective. Indeed, note first that the set H can be
reconstructed uniquely from wk(H). The arc e1(H) is the unique arc in E(t) such that
the configuration defined by wk(H) on e1(H) is an I-configuration. This also defines
uniquely the map g = ge1 used in the reflection-extension process. Similarly g(e2(H))
is the unique arc in E(g(t)) \ {e1(H)} such that the configuration defined by wk(H) on
g(e2(H)) is an I-configuration. Proceeding in this way, we see that H is uniquely given
by wk(H). But then the claim is a consequence of Lemma 6.5.

We have thus constructed at least (
m

k

)
cn(o, t)

distinct SAWs that start at o and have length between n and n + k`. Since R ≤ 1 by
Remark 5.5, this implies that

Rn+k`

(
m

k

)
cn(o, t) ≤

∑
(w,H)

R‖wk(H)‖,

where the sum runs over all SAWs w of length n starting at o and all subsets H of B(w)
of cardinality k. We will now estimate this sum in terms of Jp(R).

Each walk wk(H) is a self-avoiding walk starting at V(t), and ending at V(t′), where
t′ = (gk ◦ · · · ◦ g1)(t). Additionally, by construction wk(H) meets each of e1(H) and
e′k(H) := (gk ◦ · · · ◦ g1)(ek(H)) only in a single vertex. Decomposing wk(H) at these
two vertices, we see that it consists of a SAW w1

k(H) containing only vertices of V(t),
a SAW w2

k(H) connecting V(e1(H)) and V(e′k(H)) and a SAW w3
k(H) containing only

vertices of V(t′). By Theorem 4.13 there is a representation AH = (PH , CH) of w2
k(H)

which is a CH(e1(H))–CH(e′k(H))-completion for the simple configurations CH(e1(H))
and CH(e′k(H)). By Construction 6.4 the arcs e1(H) and e′k(H) have distance kN+k−1.
Thus the arrangement AH is counted in some entry of Jp(R)kN+k−1.

Letting ctn = maxo∈V(t) cn(o, t), we thus obtain

∑
(w,H)

R‖wk(H)‖ ≤ ‖Jp(R)‖kN+k−1
1

n∑
i=0

n−i∑
j=0

ctic
t
jR

i+j .

To estimate the latter sum, let µt = maxv∈V(t) µv,t. By taking cases according to whether
µtR ≤ 1 or µtR > 1 we obtain

n∑
i=0

n−i∑
j=0

ctic
t
jR

i+j = max{µnt Rn, 1}eo(n).

This implies that

cn(o, t) ≤ max{µnt , 1/Rn}
Rk`
(
m
k

) ‖Jp(R)‖k(N+1)+o(n)
1 .
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Recall that k = bεmc. Hence by Stirling’s approximation we obtain(
m

k

)
=

√
m

2πk(m− k)

mm

kk(m− k)m−k
(1 + o(1)) =

(
1

εε(1− ε)1−ε

)m+o(m)

. (6)

For ε = R` ‖Jp(R)‖−(N+1)
1 we have

cn(o, t) ≤ max{µnt , 1/Rn}(1− ε)(1−ε)m+o(m).

Taking n-th roots and sending n to infinity we obtain that

µo,t < max{µt, 1/R}.

Since this holds for all o, we obtain that µt < max{µt, 1/R}, hence µt < 1/R, as
desired.

We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1. By assumption all coefficients of Pc(z,y) are non-negative.
Thus it is enough to show that there is some constant δ > 0 such that

Fc,δ(R) := Pc ((1 + δ)R, (1 + δ)F(R)) <∞.

As in the proof of Lemma 6.3, it suffices to consider configurations c ∈ U that contain
only two vertices and a virtual arc connecting those vertices.

Let c = (q, x, y) be such a configuration, and let t = x−. Let us start by defining
A(c, n) to be the set of arrangements A = (P,C) on S = star(t) such that C(x) = c
and |P (t)| = n, where here n counts the total number of arcs in P (t) and not just the
non-virtual ones. In particular every A ∈ A(c, n) satisfies

‖A‖+ |nb(A, t) \ {x}| ≤ n ≤ ‖A‖+K |nb(A, t) \ {x}| , (7)

where K is the size of the adhesion sets of our tree decomposition. With this in mind,
we can write

Fc,δ(R) ≤
∞∑
n=0

(1 + δ)nΦn(R),

where
Φn(R) =

∑
A∈A(c,n)

R‖A‖
∏

e∈nb(A,t)\{x}

FC(e)(R).

It is enough find an upper bound for Φn(R) which decays exponentially in n because
then for some δ > 0 small enough, Fc,δ(R) is upper bounded by a geometric series. We
split the inner sum into three parts and treat those parts individually. In order to split
up the sum, we first need some definitions.

For ε > 0 we partition A(c, n) into two subsets according to whether they result in a
‘small’ or ‘large’ number of non-boring configurations on the edges of E(S):
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(i) S(c, ε, n) is the set of A ∈ A(c, n) such that the number of arcs e ∈ E(S) \ {x} for
which C(e) is non-boring, is smaller than εn,

(ii) L(c, ε, n) = A(c, n) \ S(c, ε, n).

Clearly,

Φn(R) =
∑

A∈S(c,ε,n)

R‖A‖
∏

e∈nb(A,t)\{x}

FC(e)(R)+
∑

A∈L(c,ε,n)

R‖A‖
∏

e∈nb(A,t)\{x}

FC(e)(R). (8)

We further split the second sum into a part summing over completions where ‘many’
of the C(e)-completions are longer than some constant L, and a part summing over
completions where ‘few’ of the C(e)-completions are longer than L. More precisely,
for L > 0 and A ∈ L(c, ε, n), let M(A, ε, n, L) be the set of sequences (Ae)e∈E(S)\{x},
where each Ae = (Pe, Ce) is an arrangement on Kē, such that Ce(e) = C(e) for every
e ∈ E(S) \ {x}, and for at least εn/2 arcs e ∈ E(S) \ {x}, we have ‖Ae‖ ≥ L. Let
F(A, ε, n, L) be the set of sequences (Ae)e∈E(S)\{x} not contained inM(A, ε, n, L). Write
‖(Ae)‖ =

∑
e∈E(S)\{x} ‖Ae‖.

Recall that
FC(e)(R) =

∑
Ae C(e)-completion

R‖Ae‖.

Using this identity on the factors of the product inside the second sum in the expression
(8), we arrive at Φn(R) = Σn(R) + Λ1

n(R) + Λ2
n(R), where

Σn(R) =
∑

A∈S(c,ε,n)

R‖A‖
∏

e∈nb(A,t)\{x}

FC(e)(R)

Λ1
n(R) =

∑
A∈L(c,ε,n)

R‖A‖
∑

(Ae)∈M(A,ε,n,L)

R‖(Ae)‖

Λ2
n(R) =

∑
A∈L(c,ε,n)

R‖A‖
∑

(Ae)∈F(A,ε,n,L)

R‖(Ae)‖.

Let us first consider Σn(R). Using the upper bound in (7) together with the fact that
R ≤ 1 by Remark 5.5, we immediately obtain

Σn(R) ≤ tεn1 R(1−Kε)n |S(c, ε, n)| ,

where 1 < t1 := 1 + max{Fc(R) | c ∈ U} is a finite constant by Lemma 6.3. We will
show that the right-hand side of the inequality decays exponentially, provided that ε is
small enough.

Let us estimate the cardinality of S(c, ε, n). Each A = (P,C) ∈ S(c, ε, n) consists
of a walk P (t) and a collection of configurations (C(e))e∈E(S) with all but at most
εn of them being boring. Note that P (t) already uniquely determines A because c is
a U-configuration. Indeed, the configurations C(e) = (Q(e), X(e), Y (e)) must be U-
configurations and by Lemma 4.1 each Q(e) is determined by P (t). We derive an upper
bound for the number of possible walks P (t). We start by counting the possible walks
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with exactly k virtual arcs, and whose walk components after removing the virtual arcs
have lengths (n0, . . . , nk). It is possible that some ni = 0. Note that

∑k
i=0 ni = n − k.

Denote the set of such walks byW(n0, . . . , nk). We can construct such walks inductively.
Start by choosing a walk W0 of length n0 starting at the initial vertex of the walk q of
the configuration c. In the i-th step we attach a virtual arc ei and a walk Wi of length
ni to the walk constructed so far; if no suitable virtual arcs exists, we do not proceed
with the construction. There are at most cni(t) ways to choose the i-th walk, and there
is a constant upper bound t2 for the number of virtual arcs incident to a vertex. Thus

|W(n0, . . . nk)| ≤ tk2
k∏
i=0

cni(t),

where cni(t) = 1 if ni = 0. To bound this product, consider some r ∈ (µt, 1/R), where
µt = maxo∈V(t) µo,t Note that such an r exists by Lemma 6.6 and that there exists a
constant t3 ≥ 1 such that cm(t) ≤ t3r

m for every m ≥ 1 and every o ∈ V(t). Moreover,
every virtual arc lies in an adhesion set such that A is non-boring on the corresponding
arc. This implies that k ≤ Kεn. We conclude that

|W(n0, . . . nk)| ≤ (t2t3)Kεnrn−k.

Every A ∈ S(c, ε, n) is uniquely determined by some W ∈ W(n0, . . . , nk) for some
k ≤ Kεn where n0, . . . , nk are given by the positions of the k virtual arcs in P (t). We
conclude that

|S(c, ε, n)| ≤
bKεnc∑
k=0

(
n

k

)
(t2t3)Kεnrn−k.

Using Stirling’s approximation as in (6) and the fact that the binomial coefficients
(
n
k

)
are monotonic in k, we see that(

n

k

)
≤
(

1

(Kε)Kε(1−Kε)1−Kε

)n+o(n)

for every 0 ≤ k ≤ Kεn and every 0 < ε ≤ 1
2K . Therefore, for some positive constant t4

depending on t1, t2, t3 and K,

Σn(R) ≤
bKεnc∑
k=0

R(1−Kε)ntεn4 rn−k
(

1

(Kε)Kε(1−Kε)1−Kε

)n+o(n)

.

It is possible to choose 0 < ε ≤ 1
2K to be small enough so that

2εtε4r
1−k/n

RKε(Kε)Kε(1−Kε)1−Kε ≤
1

R

holds for n large enough because the left side goes to r as ε tends to 0. Hence, we obtain

Σn(R) ≤ (Kεn+ 1)R(1−Kε)n2−εnRKεnR−n+o(n) ≤ 2−εn+o(n),
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as desired.
Let us next bound Λ1

n(R). Our aim is to estimate
∑

(Ae)∈M(A,ε,n,L0)R
‖(Ae)‖ for a

certain length L0. Let p = 2−4/ε and note that there exist a constant L0 > 0 such that∑
A c′-completion
‖A‖≥L0

R‖A‖ ≤ pFc′(R).

for every c′ ∈ U .
For a fixed H ⊆ nb(A, t) \ {x} with |H| ≥ εn/2, we have∑

(Ae)∈M(A,ε,n,L0)
‖Ae‖≥L0 for e∈H

R‖(Ae)‖ ≤ pεn/2
∏

e∈nb(A,t)\{x}

FC(e)(R).

Each (Ae) ∈ M(A, ε, n, L0) by definition satisfies ‖Ae‖ ≥ L0 for at least εn/2 arcs
e ∈ E(S) \ {x}. Summing over all possible H yields∑

(Ae)∈M(A,ε,n,L0)

R‖(Ae)‖ ≤ 2npεn/2
∏

e∈nb(A,t)\{x}

FC(e)(R).

It follows that

Λ1
n(R) ≤ 2npεn/2

∑
A∈L(c,ε,n)

R‖A‖
∏

e∈nb(A,t)\{x}

FC(e)(R) ≤ 2npεn/2Fc(R) ≤ 2−nFc(R).

Finally we find an upper bound for Λ2
n(R). To this end, we employ a similar strategy

as in Lemma 6.6.
For e0 ∈ E(T ), Proposition 3.8 yields an arc f0 ∈ E(Ke0) in the orbit of ē0 such that

e0 and f0 are linkable. Let M = dG(V(e0),V(f0)) and let M ′ = dT (e0, f0). We choose
f0 such that that M > L0.

For a c-completion A = (P,C), we denote by AS and Ae the restrictions of A to S and
Kē, respectively. Assume that we are given a c-completion A such that AS ∈ L(c, ε, n)
and (Ae)e∈E(S)\{x} ∈ F(A, ε, n, L0) and let w = ϕ(A) be the walk represented by A.
Consider the set of arcs e ∈ nb(A, t) \ {x} such that ‖Ae‖ < L0. As in the proof of
Lemma 6.6 we can find a subset B(w) of these arcs of size at least m := bε′nc for some
0 < ε′ < ε/2 such that dG(V(e),V(f)) > 2M + 2D for distinct e, f ∈ B(w), where D
is the diameter of the adhesion sets. Indeed, at least εn/2 vertices of the walk w lie in
adhesion sets V(e) for e ∈ nb(A, t) \ {x} such that ‖Ae‖ < L0, and the (2M + 2D)-ball
around each such vertex covers only a constant number of other vertices.

Let ε′′ ∈ (0, 1) be a constant to be defined. Consider a subset H of B(w) of cardinality
k := bε′′mc. Each e ∈ H either lies in the orbit of e0 or in the orbit of f0. If there is γ ∈ Γ
such that γe0 = e, then we choose f(e, w) = γf0. Otherwise there is γ ∈ Γ such that
γf0 = e and we choose f(e, w) = γe0. Note that M > L0 and the choice of e such that
‖Ae‖ < L0 implies that 0 < dG(w,V(f(e, w))) < M + D. Choose a vertex ue = ue(w)
of w such that dG(ue,V(f(e, w))) = dG(w,V(f(e, w))). The walk w induces an order on
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the vertices {ue | e ∈ H}, denote them by u1, . . . , uk. This order induces an order on
H, denoted by e1, . . . , ek, and consequently also on the arcs {f(e, w) | e ∈ H} which we
denote by f1, . . . , fk. As in Lemma 6.6, we successively apply Construction 6.4 to w. Let
w1(H) ∈ Reflf1(w) be a reflection-extension of w through f1 with splitting point u1 and
let g1 be the automorphism applied to the second part of w in the reflection-extension
process.

Consider the second element f2 ∈ H, and note that g1(u2) minimizes dG(v,V(g1(f2)))
among the vertices v of w1(H), since

dG (V(g1(f1)),V(g1(f2))) > 2M + 2D.

Thus there is a reflection-extension w2(H) ∈ Reflg1(f2)(w1(H)) of w1(H) through g1(f2)
with splitting point g1(u2). Continuing in this way, we obtain a sequence of SAWs
w1(H), . . . , wk(H).

Letting H vary over all possible subsets of B(w) of cardinality k, we obtain a map
(w,H) 7→ wk(H). We claim that this map is injective. Indeed, note first that the set H
can be reconstructed uniquely from wk(H). The arc e1 is the unique arc in E(t) such that
the configuration defined by wk(H) on e1 is an I-configuration. Then, up to orientation,
f1 is the unique arc of Kē1 such that dG(V(e1),V(f1)) = M and wk(H) visits V(f1).
This also defines uniquely the map g1 used in the reflection-extension process. Similarly
g1(e2) is the unique arc in E(g1(t)) \ {e1} such that the configuration defined by wk(H)
on g1(e2) is an I-configuration. Proceeding in this way, we see that H is uniquely given
by wk(H). But then the claim is a consequence of Lemma 6.5.

Note that each time we apply the local modification, the length of the SAW we obtain
increases by at most `, where ` > 0 is a uniform constant, hence |wk(H)| ≤ |w| + k`.
Therefore,

Λ2
n(R) =

∑
A∈L(c,ε,n)

∑
(Ae)∈F(A,ε,n,L)

R|w| ≤ 1(
m
k

)
Rk`

∑
(w,H)

R|wk(H)|.

where the sum index (w,H) ranges over the set of all walks w represented by a c-
completion A such that AS ∈ L(c, ε, n) and (Ae)e∈E(S)\{x} ∈ F(A, ε, n, L0), and all
possible choices of subsets H of B(w) of size k.

Each walk wk(H) is a self-avoiding walk starting at V(x), and ending at V(x′), where
x′ = (gk ◦ · · · ◦ g1)(x). Note that g1, . . . , gk, and thus also x′, depend on H. By Theo-
rem 4.13 there is a representation AH = (PH , CH) of wk(H) such that XH(x) = x and
YH(x′) = x′. Note also that by construction CH(x) and CH(x′) are simple configurations
because w meets V(x) only in its endpoints. Observe that the distance of x and x′ is
2kM ′ + kN ′ + k + 1 because for every i = 1, . . . , k the distance of ei and fi is M ′ and
the distance of fi and gi(fi) is N ′. Thus the arrangement AH is counted in some entry
of Jp(R)k(2M ′+N ′+1)+1. We obtain∑

(w,H)

R|wk(H)| ≤
∥∥∥Jp(R)k(2M ′+N ′+1)+1

∥∥∥
1
≤ et5k

for some constant t5.
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Using the bound (6) for the binomial coefficient, we see that we can choose ε′′ small
enough so that

Λ2
n(R) ≤ et5k(

m
k

)
Rk`
≤ e−ε′′m+o(m),

Since m = bε′nc, the desired assertion follows readily.

Proposition 6.2 can be now proved in a similar way.

Proof of Proposition 6.2. For c, c′ ∈ Ip, the analyticity of Jc,c′(z,y) can be proved by
arguing as in Proposition 6.1. Indeed, we can split Φn(R) into three sums Σn(R), Λ1

n(R)
and Λ2

n(R), where each of them can be handled in the same way. We emphasise that
this is indeed the case for Λ2

n(R) because of our assumption that c, c′ ∈ Ip, which allows
us to obtain an arrangement that contributes to Jp(R)N , for some N > 0, after applying
a successive application of our construction.

In general, for c = (q, x, y), c′ = (q′, x′, y′) ∈ I, we can see that c and c′ contain
simple configurations c1 = (q1, x, y) and c′1 = (q′1, x

′, y′) and U-configurations c2 =
(q2, x, x), c′2 = (q′2, x̄

′, x̄′). Then for (z,y) = ((1 + δ)R, (1 + δ)F(R))

Jc,c′(z,y) ≤ Jc1,c′1(z,y)Pc2(z,y)Pc′2(z,y),

and each term in the product is finite for some δ > 0 sufficiently small.

7 Spectral radius and radius of convergence

Our goal in this section is to show that R < rK for every U-component K. Our approach
loosely follows Alm and Janson [1] of decomposing U-configurations into smaller U-
configurations and pairs of I-configurations. In order to formalise this approach we first
need a few definitions.

A pair configuration is a pair (c1, c2) of persistent I-configurations c1 = (q1, x1, y1), c2 =
(q2, x2, y2) ∈ Ip such that x1 = x2; we write Ipair = {(c1, c2) ∈ Ip×Ip : x1 = x2} for the
set of all pair configurations.

Let (c1, c2) and (c′1, c
′
2) be pair configurations. A (c1, c2)–(c′1, c

′
2)-completion is a pair

(A1, A2) consisting of a c1–c′1-completion A1 and a c2–c′2-completion A2 having the same
target arc f . The length of (A1, A2) is the length of A1 (which equals the length of A2)
and we call it disjoint if the walks p1 and p2 represented by A1 and A2 are disjoint.
Denote by A(c1, c2, c

′
1, c
′
2, n) the set of all (c1, c2)–(c′1, c

′
2)-completions of length n and by

Adisj(c1, c2, c
′
1, c
′
2, n) the subset of those which are disjoint. We define a matrix JIpair(z)

with index set Ipair × Ipair entry-wise by

(JIpair(z))(c1,c2),(c′1,c
′
2) =

∑
(A1,A2)∈A(c1,c2,c′1,c

′
2,1)

z‖A1‖+‖A2‖.

Like in the case of single configurations, we define a dependency digraph Dpair for pair
configurations. Its vertex set is Ipair and we have an arc from (c1, c2) to (c′1, c

′
2) if the

entry at position (c1, c2), (c′1, c
′
2) in the matrix JIpair(z) is non-zero.
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A pair configuration (c1, c2) is called simple if both c1 and c2 are simple. It is called
persistent, if it lies on a walk connecting two simple pair configurations in Dpair. The set
of persistent pair configurations is denoted Ipair,p. Note that while every persistent pair
configuration consists of two persistent I-configurations, the converse is not necessarily
true. This is due to the fact that a c1–c′1-completion A1 and a c2–c′2-completion A2

might have the same source arc but different target arcs.
Finally we define the matrix Jpair,disj(z) with index set Ipair,p × Ipair,p entry-wise by

(Jpair,disj(z))(c1,c2),(c′1,c
′
2) =

∑
(A1,A2)∈Adisj(c1,c2,c

′
1,c
′
2,1)

z‖A1‖+‖A2‖.

Denote by λpair,disj(z) the spectral radius of Jpair,disj(z).

Lemma 7.1. For every z ∈ (0, R], Jpair,disj(z) has finite entries and furthermore, we
have λpair,disj(z) < λIp(z)2.

Proof. We start by noting that for z ≥ 0 all matrices considered in this proof are non-
negative, so whenever we restrict the index set or reduce some entries of a matrix, the
spectral radius of the resulting matrix must be smaller than or equal to the spectral
radius of the original matrix.

Consider the Kronecker product JIp×Ip(z) = JIp(z) ⊗ JIp(z). The eigenvalues of
the Kronecker product of two matrices M1 and M2 are precisely the products λ1λ2 of
eigenvalues λ1 of M1 and λ2 of M2. Therefore the spectral radius of JIp×Ip(z) is λIp(z)2.
By Lemma 5.8, the matrix JIp(z) has finite entries, thus the same holds for JIp×Ip(z).

By definition every (c1, c2)–(c′1, c
′
2)-completion (A1, A2) consists of a c1–c′1-completion

A1 and a c2–c′2-completion A2, so for z ∈ (0, R] all entries of the matrix JIpair(z) are
smaller than or equal to the respective entries of JIp×Ip(z). We conclude that its spectral
radius λIpair(z) satisfies λIpair(z) ≤ λIp(z)2. By Lemma 5.4 all simple pair configurations
are contained in the same strong component of Dpair, so the set Ipair,p of persistent pair
configurations is a strong component of Dpair. In particular for z > 0 the submatrix
JIpair,p(z) of JIpair(z) obtained by restricting the index set to Ipair,p is irreducible. Finally,
the entries of the matrix Jpair,disj(z) are smaller than or equal to the respective entries of
JIpair,p(z) with strict inequality for some entries, for instance the diagonal entries. Thus
λpair,disj(z) < λIpair(z) ≤ λIp(z)2 holds.

To simplify notation let λU (z) := max{λK(z) | K ⊆ U strong component of D} and
let λIt(z) := max{λK(z) | K ⊆ It strong component of D}.

Lemma 7.2. For every z ∈ (0, R] we have λU (z) ≤ λpair,disj(z).

Proof. Let K ⊆ U be a strong component of D. Let c, c′ be two configurations in K and
recall that A(c, c′, n) denotes the set of c–c′-completions of length n. Then

(JK(z)n)c,c′ =
∑

A∈A(c,c′,n)

z‖A‖. (9)
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By Corollary 3.4 there is a constant N ′ such that V(e)∩V(f) = ∅ whenever dT (e, f) ≥
N ′ holds for two edges e, f ∈ E(T ). Let A ∈ A(c, c′, n) for some n ≥ N ′, let S be the
support of A and let ι and τ be source and target arc of A, respectively. The arrangement
A represents a unique SAW ϕ(A) on G(S) starting and ending in V(ι). Let v0, v1, . . . , vk
be the sequence of vertices of ϕ(A) contained in at least one of V(ι) and V(τ), ordered
by their appearance in ϕ(A). We decompose ϕ(A) as

ϕ(A) = v0w1v1w2v3 . . . wkvk,

in other words, wi is the sub-walk of ϕ(A) starting at vi−1 and ending at vi. Denote by
K the size of an adhesion set of the tree decomposition. Then the number of sub-walks
k is bounded from above by 2K. We call a walk wi virtual if it contains only a single
arc and this arc is contained in E(ι) or E(τ), and non-virtual otherwise. Then each
non-virtual wi belongs to one of four possible classes.

(i) wi starts and ends in V(ι)

(ii) wi starts and ends in V(τ)

(iii) wi starts in V(ι) and ends in V(τ)

(iv) wi starts in V(τ) and ends in V(ι)

Observe that the number of walks of class (iii) coincides with the number of walks of
class (iv) because ϕ(A) starts and ends in V(ι). Hence we can group them into pairs,
each consisting of a walk of class (iii) and a walk of class (iv). Denote by W1, W2 and
W3 the sets of walks wi of class (i), class (ii) and the set of pairs (wi, wj) of classes (iii)
and (iv), respectively. For technical reasons, pairs (wi, wj) such that the final vertex of
wi coincides with the initial vertex of wj (that is, j = i+1) are not added toW3; instead
their concatenation is included in W1. Note that W3 contains at least one pair of walks,
because c′ is non-boring.

By Theorem 4.13 each w ∈ W1 is represented by a cw-completion Aw, where cw is
a U-configuration on ι. Similarly, each w ∈ W2 is represented by a cw-completion Aw,
where cw is a U-configuration on τ . Finally, each pair (w,w′) ∈ W3 is represented by a
disjoint (cw, cw′)–(c′w, c

′
w′)-completion (Aw, Aw′) of length n, where cw and cw′ are simple

configurations on ι and c′w and c′w′ are simple configurations on τ .
Note that by construction

z‖A‖ =
∏
w∈W1

z‖Aw‖
∏
w∈W2

z‖Aw‖
∏

(w,w′)∈W3

z‖Aw‖+‖Aw′‖.

Moreover, the arrangement A can be uniquely reconstructed from the pair c, c′, the cw-
completions Aw, and the (cw, cw′)–(c′w, c

′
w′)-completions (Aw, Aw′). Let L be the number

of possible configurations on any fixed arc e. Then obviously for each c ∈ C there are at
most L configurations on e which are Γ-equivalent to c, so at most L of the configurations
cw and c′w are equivalent to c. We conclude that for fixed k1, k2 ≥ 0 and k3 ≥ 1, the
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subset of all A ∈ A(c, c′, n) such that |Wi| = ki for i = 1, 2, 3 gives a contribution to the
sum (9) of at mostL∑

c1∈U
Fc1(z)

k1+k2
L2

∑
(c3,c4),(c′3,c

′
4)∈Ipair,p

(Jpair,disj(z)
n)(c3,c4),(c′3,c

′
4)

k3

(10)

Lemma 6.3 tells us that Fc1(R) is finite for every c1 ∈ U . In particular, by monotonicity
of the entries of Fc1(z), there is some constant L′ which does not depend on n such that

L
∑
c1∈U

Fc1(z) ≤ L′

for all z ∈ [0, R].
Recall that for any matrix norm ‖·‖ and any matrix A with spectral radius λ there

are finite constants M,m such that ‖An‖ ≤ Mnmλn holds for every n ∈ N. An easy
way to verify this is by computing powers of Jordan blocks in the Jordan normal form
of A. Applying this to Jpair,disj(z), we obtain

L2
∑

(c3,c4),(c′3,c
′
4)∈Ipair,p

(Jpair,disj(z)
n)(c3,c4),(c′3,c

′
4) ≤Mnmλnpair,disj(z) (11)

Utilizing these estimates and that 0 ≤ k1 + k2 ≤ 2K and 1 ≤ k3 ≤ K, from (9) we
obtain

(JK(z)n)c,c′ ≤
2K∑
k1=0

K∑
k3=1

(L′)k1
(
Mnmλnpair,disj(z)

)k3

Note that λpair,disj(z) ≤ 1 by Lemma 7.1 combined with Lemma 5.8. Thus

(JK(z)n)c,c′ ≤M ′nm
′
λnpair,disj(z)

holds for some new constants M ′ and m′ independent of n.
Taking n-th roots and sending n to infinity, an application of Gelfand’s formula com-

pletes the proof:
λK(z) = lim

n→∞
‖JK(z)n‖1/n∞ ≤ λpair,disj(z)

Lemma 7.3. For every z ∈ (0, R] we have λIt(z) ≤ λpair,disj(z).

Proof. We follow a similar strategy as in the proof of Lemma 7.2. Let K ⊆ U be a strong
component of D and let c, c′ be two configurations in K. Then

(JK(z)n)c,c′ =
∑

A∈A(c,c′,n)

z‖A‖. (12)

As in the previous proof we translate every A ∈ A(c, c′, n) to the SAW ϕ(A) represented
byA. Then we decompose ϕ(A) at every vertex contained in the adhesion sets V(ι)∪V(τ),
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where ι and τ are source and target arc of A. We end up with sub-walks w1, . . . , wk of
ϕ(A) and categorize them into classes (i) to (iv). However, because A is a c–c′-completion
for two I-configurations c and c′, the walk ϕ(A) starts at V(ι) and ends at V(τ). This
means that class (iii) contains one more walk than class (iv). We denote by w0 the walk
wi with maximal index i in class (iii). Excluding w0, as before we can build pairs, each
consisting of a walk of class (iii) and a walk of class (iv). Denote by W1, W2 and W3

the sets of walks wi of class (i), class (ii) and the set of pairs (wi, wj) of classes (iii) and
(iv), respectively.

As before, for every w ∈ W1∪W2 there is a cw-completion Aw representing w provided
by Theorem 4.13 such that cw is a U-configuration. Furthermore, for every (w,w′) ∈
W3 there is a (cw, cw′)–(c′w, c

′
w′)-completion (Aw, Aw′) representing (w,w′) such that

cw, cw′ , c
′
w and c′w′ are simple configurations. Finally, there is a c0–c′0-completion Aw0

representing w0 such that c0 and c′0 are simple configurations.
The main difference to the previous proof is that the size k3 of the set W3 need not

necessarily be larger than 0. We denote by A=0(c, c′, n) the subset of all A ∈ A(c, c′, n)
such that k3 = 0 and by A>0(c, c′, n) its complement A(c, c′, n) \ A=0(c, c′, n). Let us
first deal with arrangements in A>0(c, c′, n), which works similarly to the previous proof.
The only difference is an additional factor

L
∑

c0,c′0∈Ip

(JIp(z)n)c0,c′0

in the analogue of equation (10) coming from the walk w0. As in (11), we can bound this
factor from above by M0n

m0λnIp(z), for some constants M0 and m0 independent from n.

By Lemma 5.8 we have that λIp(z) ≤ 1, thus we again end up with∑
A∈A>0(c,c′,n)

z‖A‖ ≤M ′nm′λnpair,disj(z) (13)

for some constants M ′,m′ independent of n.
We are left to deal with arrangements in A=0(c, c′, n). Here we need to treat the

cw-completions Aw for w ∈ W1 ∪W2 more carefully. Let Sw be the support of Aw and
denote by W the open path in T connecting ι and τ . Then W ∩ Sw is an open path of
W containing ι if w ∈ W1 and τ if w ∈ W2. Denote by jw ∈ [n] the length of this open
path. Then Aw consists of a cw–c′w-completion of length jw − 1 for some non-boring U-
configuration c′w and a c′w-completion. We claim that there is a constant N independent
of n such that ∑

w∈W1∪W2

jw ≥ n−N (14)

holds for every A ∈ A=0(c, c′, n). Indeed, by the choice of A for every interior arc e of
W the configuration ρ(C(e)) lies in the component K and thus must be transient by
Lemma 5.6. In particular V(e) must be visited by some w ∈ W1 ∩W2, otherwise C(e) =
Cw0(e) holds and thus ρ(C(e)) lies in the same component as the simple configurations
c0 and c′0 and thus is persistent. By Corollary 3.4 there is a constant N ′ such that
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V(e) ∩ V(f) = ∅ whenever dT (e, f) ≥ N ′. In particular, w ∈ W1 cannot visit V(e) for
any arc e such that dT (ι, e) > jw + N ′. This implies in particular that (14) holds for
N = 2N ′.

For fixed k ≥ 0 and integers j1, . . . jk ∈ [n], the subset of all A ∈ A=0(c, c′, n) such
that Wi contains k elements w1, . . . , wk with jwi = ji gives a contribution to the sum
(12) of at mostL ∑

c0,c′0∈Ip

(JIp(z)n)c0,c′0

 k∏
i=1

L ∑
c1,c′1∈U

(JU (z)ji−1)c1,c′1Fc′1(z)


The first factor is bounded by M0n

m0 as in the previous case. For the other factors, we
use again that by Lemma 6.3 there is a constant L′ such that Fc(z) ≤ L′ holds for every
c ∈ U and every z ∈ [0, R]. Therefore, we bound each factor as in (11) to obtain the
upper bound

k∏
i=1

L ∑
c1,c′1∈U

(JU (z)ji−1)c1,c′1Fc′1(z)

 ≤ (M1)k
k∏
i=1

(ji − 1)m1λU (z)ji−1 ≤Mk
2 n

m2λU (z)n,

where M1,M2,m1 and m2 are constants independent of n and for the last inequality we
use (14) and that λU (z) ≤ 1 by Lemma 7.2.

With these estimates we obtain

∑
A∈A=0(c,c′,n)

z‖A‖ ≤M0n
m0

2K∑
k=0

n∑
j1,...,jk=1

Mk
2 n

m2λnU (z) ≤M3n
m3λnU (z) (15)

for some new constants M3 and m3.
Combining equations (13) and (15) and using Lemma 7.2, we end up with

(JK(z)n)c,c′ ≤M ′′nm
′′
λnpair,disj(z)

for some new constants M ′′ and m′′. Taking the n-th root and sending n to infinity
completes the proof.

Corollary 7.4. If Γ does not fix an end of T , then RU > R.

Proof. Since Pc(z,y) is analytic at (z,y) = (R, (Fc′(R))c′∈C) for all c ∈ U by Propo-
sition 6.1, the matrix JU (R) is well-defined and has finite entries (for the strong com-
ponents of U this is already implied by Lemma 5.8). It follows from Lemmas 5.8, 7.1,
and 7.2 that λU (R) < 1, hence I − JU (R) is invertible. Since Pc(z,y) is analytic at
(z,y) = (R, (Fc′(R))c′∈C) for all c ∈ U , it follows from the analytic Implicit Function
Theorem that the functions Fc(z) for c ∈ U are analytic in a neighbourhood of R.
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8 Proof of main results

In this section we will prove the main results of this paper building on the results
developed in the previous sections.

Our overall strategy is to exploit the close connection between c-completions and
SAWs to obtain an expression for the SAW-generating function FSAW(z) in terms of the
functions Fc(z). To do this, recall that Theorem 4.15 allows us to bijectively translate
every SAW w on G into a complete arrangement A = (P,C) on the support of w
representing w such that ‖A‖ coincides with the length of w. By Lemma 4.17 the shape
P (s0) of the source s0 of A starts with the first arc of p. In particular, even when fixing
the starting vertex o of our SAWs, s0 may still vary depending on the specific choice of w,
the only restriction is that V(s0) has to contain o. To get rid of this small inconvenience,
let us first manipulate our tree decomposition.

Fix o ∈ V (G) and let S be the subtree of T induced by all vertices t ∈ V (T ) for which
V(t) contains a vertex at distance at most 2 from o. Note that S is finite by Proposition
3.3 and that G(S) contains all edges of G incident to o or one of its neighbours. Let
T ′ = (T ′,V ′) = T /S be the tree decomposition obtained from T by contracting all
interior edges of S and let s0 be the vertex of T ′ representing V (S). Clearly the tree
decomposition T ′ is not Γ-invariant, as the new part V ′(s0) plays a special role and
cannot be mapped to any other parts. However, every arc e ∈ E(T ′) pointing towards
s0 was also present in T and the open cone Ke in T ′ coincides with the respective cone in
T , so c-completions and their generating functions remain the same. By Theorem 4.15
any SAW w starting at o is represented by a unique complete arrangement A on the
support of w in T ′. Clearly P (s0) starts at o. Moreover, all edges incident to o are
contained in the part V ′(s0) by construction of T ′. Thus by Lemma 4.17 the source of
A has to be s0. We obtain

FSAW(z) =
∑

w SAW starting at o

z|w| =
∑

A compl. arr.
with source s0 s.t.
P (s0) starts at o

z‖A‖.

By decomposing the tree T ′ into an open star centered at s0 and possibly infinitely
many cones Kē for e ∈ E(s0) and the respective arrangement on the open subtree S
into an arrangement A = (P,C) on star(s0) and C(e)-completions for all non-boring
configurations on arcs e of star(s0), we conclude

FSAW(z) =
∑

A arr. on star(s0):
P (s0) starts at o

z‖A‖
∏

e∈nb(A,s0)

FC(e)(z).

We point out that all arrangements A included in the sum satisfy X(e) = ē for every
e ∈ E(s0) because by construction o is not included in any adhesion set.

To analyse FSAW(z) we need to first isolate the terms that determine its radius of
convergence. To this end we write

FSAW(z) = F 1
SAW(z) + F 2

SAW(z), (16)
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where
F 1

SAW(z) =
∑

A arr. on star(s0):
P (s0) starts at o and
∀e∈E(s0) : Y (e)=ē

z‖A‖
∏

e∈nb(A,s0)

FC(e)(z)

and
F 2

SAW(z) =
∑

A arr. on star(s0):
P (s0) starts at o

∃ e0∈E(s0) : Y (e0)=e0

z‖A‖
∏

e∈nb(A,s0)

FC(e)(z).

Proposition 8.1 below implies that F 1
SAW(z) is analytic at z = R. Hence only F 2

SAW(z)
is relevant. In order to study the latter we further write

F 2
SAW(z) = F−(z)

∞∑
k=0

JI(z)
kF+(z) (17)

where F−(z) = (F−c (z))c∈I is the vector with entries

F−c (z) =
∑

A arr. on star(s0):
P (s0) starts at o
∃ e0∈E(s0) : C(e0)=c

z‖A‖
∏

e∈nb(A,s0)\{e0}

FC(e)(z)

and F+(z) = (F+
c (z))c∈I is the vector with entries

F+
c (z) =

∑
A arr. on star(x−):

C(x) = c and
∀e∈E(x−) : Y (e)=ē

z‖A‖
∏

e∈nb(A,x−)\{x}

FC(e)(z).

By Lemma 5.8, we know that

F 2
SAW(z) = F−(z)(I − JI(z))

−1F+(z) (18)

for z < R.
In order to prove Theorem 1.1, by [41, Theorem 4] it suffices to show that µp < µw,

where µp and µw are the connective constants for SAPs and SAWs, respectively. To stay
within the framework of our definitions, it will be convenient to work with self-avoiding
returns (SARs) instead of SAPs. By construction of T ′ all edges incident to neighbours
of o are contained in the part V ′(s0). Thus by Lemma 4.17 every SAR w starting at o is
represented by a unique complete arrangement A on the support of w in T ′ with source
and target s0 such that P (s0) starts at o and ends at a neighbour of o. Let

FSAR(z) =
∑

w SAR starting at o

z|w|.

As above, we obtain

FSAR(z) =
∑

A arr. on star(s0):
P (s0) starts at o and ends in N(o)

z‖A‖
∏

e∈nb(A,s0)

FC(e)(z). (19)

47



Observe that the condition X(e) = Y (e) = ē for every e ∈ E(s0) implies that each
configuration C(e) is a U-configuration.

We will now prove the following result.

Proposition 8.1. Each of the functions F 1
SAW(z), FSAR(z), F−(z) and F+(z) is analytic

at z = R. Moreover, the function FSAW(z) is analytic in the interval (0, R).

Proof. Let F (z) be any of the functions F 1
SAW(z), FSAR(z), F−c (z) and F+

c (z). Then
there is some s ∈ V (T ) such that each of the walks counted by F (z) starts at some given
vertex v0 in V (s) and ends in V (s). Let w be one of these walks. We decompose w as
follows.

Let e1 and e2 be the first and last arc of w not in E(s), respectively, and let v1 = e−1
and v2 = e+

2 . If no such arcs exist, we set v1 = v2 = w+. Then wv1 and v2w are SAWs
on G(s). If v1 6= v2, let f1, f2 ∈ E(s) be such that ei is an edge of G(Kf̄i

). Then v1wv2

is a SAW on G starting in V(f1) and ending in V(f2). If f1 = f2, then v1wv2 can be
represented by a pair consisting of a c-completion on the cone Kf1 and a c′-completion
on the cone Kf̄1

. Note that c and c′ are U-configurations which only differ in their
entry and exit direction. Assume now that f1 6= f2. Then v1wv2 can be represented
by a triple consisting of a c1-completion on the cone Kf̄1

, a c2-completion on Kf̄2
, and

a c′1–c′2-completion of length 1 on Kf1 ∩ Kf2 which contributes to JI . Here c1 and c2

are U-configurations, c′1 and c′2 are I-configurations, c1 and c′1 only differ in their entry
direction while c2 and c′2 only differ in their exit direction.

With this decomposition in hand, the analyticity of F (z) follows from Proposition 6.1,
Proposition 6.2 and Lemma 6.6.

Too see that FSAW(z) is analytic in the interval (0, R), recall that by (16) and (18) we
have that

FSAW(z) = F 1
SAW(z) + F−(z)(I − JI(z))

−1F+(z).

is finite for z ∈ (0, R).

With the above result in hands we can show that R is determined by Ip.

Proposition 8.2. If Γ does not fix an end of T , then we have RIp = R.

Proof. First, we claim that λIp(R) = 1. Assume for a contradiction that λIp(R) < 1.
Then λI(R) < 1 by Lemmas 5.8, 7.1, and 7.3. Recall that JI(z) is analytic at z = R
by Proposition 6.2. Then λI(z) < 1 for every z in a neighbourhood of R. Now, observe
that

(Fc(z))c∈I =

∞∑
n=0

JI(z)
nF+(z) (20)

provided that JI(z) and F+(z) are analytic. If λI(z) < 1, this implies that (Fc(z))c∈I =
(I − JI(z))

−1F+(z).
Since this holds at z = R, it follows that (Fc(z))c∈I is analytic at z = R, hence

RI > R. The latter together with Corollary 7.4 implies that R > R, which is absurd.
This proves the claim.

Since λIp(R) = 1, equation (20) together with the fact that Ip is a strong component
implies that Fc(R) is infinite for every c ∈ Ip. The desired assertion follows.
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We are now ready to prove the main results of this paper. We first show that SAW
is ballistic. In order to prove Theorem 1.2, we will show the strict inequality µp < µw.
The fact that this implies the ballisticity of SAW was proved in [41, Theorem 4]. This
result was proved for transitive graphs but as explained in [41, Remark 4.1], it can be
extended to graphs which are not necessarily transitive but satisfy

lim sup
n→∞

(
sup
x∈V

pn(x)

)1/n

< lim inf
n→∞

(
inf
x∈V

cn(x)

)1/n

.

In particular, the result of [41, Theorem 4] holds for quasi-transitive graphs.

Proof of Theorem 1.2. By Proposition 8.1, the generating function FSAR(z) is analytic
at z = R. Since there are fewer self-avoiding polygons of length n containing o than
self-avoiding returns starting at o, it follows that µp < 1/R.

Let p be a shortest walk from o to some adhesion set V(e), where e+ = s0. Let c
be the simple configuration (q, x, y) where q is the walk consisting only of the terminal
vertex of p, x = e, and y = ē. Then z|p|Fc(z) ≤ FSAW(z) because p together with
the walk corresponding to any c-completion is a self-avoiding walk. This together with
Proposition 8.2 implies that µw ≥ 1/RIp = 1/R. The desired result follows.

Remark 8.3. As mentioned in the proof of Theorem 1.2, we have µw ≥ 1/R. The
reverse inequality µw ≤ 1/R follows from the fact that FSAW(z) is finite for every z < R
by Proposition 8.1. This proves that µw = 1/R.

We will now prove that cn grows asymptotically like µnw, that is, the subexponential
factor is O(1).

Proof of Theorem 1.1. We will show that all singularities of FSAW(z) on the circle |z| =
R are simple poles and they are located at the complex k-th roots of Rk for some k,
from which the desired result will follow. To this end, let r > R be such that each of
F 1

SAW(z), F−(z), F+(z) and JI(z) is analytic for every z ∈ C such that |z| < r. Such
an r exists by Propositions 6.2 and 8.1. Then the points of singularity of FSAW(z) for
|z| < r are the points at which det(I − JI(z)) = 0 by (16) and (18).

Since det(I−JI(z)) is a non-constant analytic function, its zeros are isolated, hence we
can assume without loss of generality that det(I − JI(z)) 6= 0 for every R < |z| < r. For
every |z| < R we have λI(z) < 1 by Lemma 5.8, thus the only singularities of FSAW(z)
for |z| < r are at the points of the circle |z| = R at which 1 is an eigenvalue of JI(z).
Let us denote this set by S and consider some w ∈ S.

We claim that 1 is a simple eigenvalue of JI(w). Indeed, note that 1 is a simple
eigenvalue of the irreducible matrix JIp(R) by the Perron-Frobenius theorem, and that
λIt(R) < 1 by Lemmas 7.3 and 7.1. Since |Jc,c′(w)| ≤ Jc,c′(R) for every c, c′ ∈ I by the
triangle inequality we have λIp(w) = 1 and λIt(w) < 1. It thus suffices to show that 1
is a simple eigenvalue of JIp(w).

Note that JIp(w) is not a real matrix in general, and we cannot apply Perron-
Frobenius. Instead, we argue as follows. The matrix JIp(R) is irreducible, |Jc,c′(w)| ≤
Jc,c′(R) for c, c′ ∈ Ip, and JIp(w) and JIp(R) have the same spectral radius. Because 1
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is the eigenvalue of JIp(w) of maximal modulus, it follows from [43, Chapter I, Proposi-
tion 6.4] that JIp(w) and JIp(R) are similar matrices and thus have the same spectrum.
Hence 1 is a simple eigenvalue of JIp(w). Since λIt(w) < 1 we deduce that 1 is a simple
eigenvalue of JI(w) thus proving our claim.

Our aim is to deduce that (I − JI(z))
−1 has a simple pole at every point in S, which

implies that the same holds for FSAW(z).
Applying [1, Lemma 9] we obtain for any w ∈ S that

lim
z→w

(z − w)(I − JI(z))
−1 =

(
ηT (w)J′I(w)ξ(w)

)−1
ξ(w)ηT (w), (21)

provided that ηT (w)J′I(w)ξ(w) 6= 0, where η(w) and ξ(w) are left and right eigenvectors
of J(w) corresponding to 1 normalised so that ηT (w)ξ(w) = 1.

To verify the condition note that since λIt(w) < 1, the only non-zero entries of η(w)
and ξ(w) correspond to elements of Ip, hence ηT (w)J′I(w)ξ(w) = ηTp (w)J′Ip(w)ξp(w),

where ηp(w) and ξp(w) are the restrictions to Ip. In the particular case w = R, we have
ηTp (R)J′Ip(R)ξp(R) 6= 0 because by the Perron-Frobenius theorem the entries of ηp(R)

and ξp(R) are strictly positive and at least one entry of JIp(z) is strictly increasing in z.
Thus it suffices to show that ηTp (w)J′Ip(w)ξp(w) = ηTp (R)J′Ip(R)ξp(R).

To this end, let D = D(w) be an invertible matrix such that D−1JIp(w)D = JIp(R).
Then D−1ξp(w) = αξp(R) and ηTp (w)D = α−1ηTp (R) for some α 6= 0 due to the fact

that each of D−1ξp(w), ξp(R), ηTp (w)D, ηTp (R) is an eigenvector of an one-dimensional
eigenspace of JIp(R). The scalar factor α is due to the normalisation. Applying again
[43, Chapter I, Proposition 6.4] we obtain that |Jc,c′(w)| = Jc,c′(R) for all c, c′ ∈ Ip, in
other words, we have equality in the triangle inequality. This implies that there exist
integers k, ` such that tn is a non-zero Taylor coefficient of Jc,c′(z) only if n ∈ kZ + `
and w/R is a kth root of unity.

Thus D−1JIp(βw)D = JIp(βR) for every β ∈ [0, 1], hence D−1J′Ip(w)D = J′Ip(R).

This in turn implies that ηTp (w)J′Ip(w)ξp(w) = ηTp (R)J′Ip(R)ξp(R), and we can conclude

that (21) holds.
Therefore there exist b1, b2, . . . , bk ∈ C such that the function

H(z) = FSAW(z)−
k∑
i=1

bi
wi − z

is analytic in the open disk |z| < r, where w1, w2, . . . , wk are the elements of S. This
implies that the nth Taylor coefficient hn of H(z) around 0 satisfies hn = O((r − ε)−n)
for ε = (r −R)/2 > 0. Taylor expanding we see that

cn −
k∑
i=1

bi

wn+1
i

= hn = O((r − ε)−n).

Since each wi/R is a kth root of unity, µw = 1/R by Remark 8.3, and cn ≥ 0, it

follows that (1) holds for some a1, a2, . . . , ak ≥ 0. Since on a quasi-transitive graph c
1/n
n

converges to µw [28], it follows that each ai is strictly positive.
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The second part of the theorem follows now immediately, recalling that on a transitive
graph we have cn ≥ µnw for every n ≥ 1.
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