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Abstract

Let G ≤ Sym(X) for a countable set X. Call a colouring of X asymmetric, if
the identity is the only element of G which preserves all colours. The motion (also
called minimal degree) of G is the minimal number of elements moved by an element
g ∈ G \ {id}. We show that every locally compact permutation group with infinite
motion admits an asymmetric 2-colouring. This builds on, and generalises a recent
result by Babai and confirms a conjecture by Imrich, Smith, Tucker, and Watkins
from 2015.

1 Introduction

Let X be a countable set and let G ≤ Sym(X). A colouring of X is called asymmetric, if
the identity is the only element of G which preserves the colouring. The term asymmetric
colouring was probably first introduced in [2], but the study of asymmetric colouring
dates further back; for instance the proof of Frucht’s theorem [6] crucially relies on
putting asymmetric ‘decorations’ on the edges of a graph.
In 1996, Albertson and Collins reintroduced asymmetric colourings of graphs under

the name distinguishing colourings [1]. Their paper sparked significant interest in the
study of asymmetric graph colourings, leading to many nice results and conjectures,
some of them by the author of the present paper [3, 8, 9, 10, 11, 12, 13, 14, 15, 16].
A notion that plays a role in many of these results and their proofs is the motion (in

permutation group theory more commonly known as the minimal degree) of a permuta-
tion group. It is defined as the minimal number of elements moved by any g ∈ G \ {id}.
The connection between motion and asymmetric colourings was for instance made ex-
plicit in [15], but it had been known much longer, see for instance [5, 7].
A conjecture by Tucker [16] which had been open for over a decade before it was

recently settled by Babai [3] asserts that motion and asymmetric colourings are also
closely connected for infinite, locally finite graphs.

Theorem 1 (Babai [3]). If the automorphism group of a locally finite, connected graph
has infinite motion on the vertex set X, then there is an asymmetric 2-colouring of X.
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The main result of this short note generalises the above result to the setting of lo-
cally compact permutation groups, where topological properties are with respect to the
permutation topology, see Section 2.

Theorem 2. Let G ⊆ Sym(X) be a locally compact permutation group. If G has infinite
motion, then there is an asymmetric 2-colouring of X.

We point out that this result is not independent of [3]; it relies on the main technical
result of that paper which is paraphrased in Theorem 4 below. Since every closed, sub-
degree finite permutation group is locally compact, Theorem 2 confirms a generalisation
of Tucker’s conjecture which was stated by Imrich, Smith, Tucker, and Watkins in [9]
and highlighted as an open problem in [3].

2 Notation and preliminiary results

Let X be a countably infinite set. A permutation group on X is a group G ≤ Sym(X)
together with the induced action on X. As usual, for Y ⊆ X we denote by GY the
setwise stabiliser, and by G(Y ) the pointwise stabiliser of Y in G. If Y = {x} write Gx

instead of G{x}. A suborbit of G with respect to x is an orbit of Gx. We call G subdegree
finite if all suborbits are finite.
The group Sym(X) can be endowed with the topology of pointwise convergence on X

which in this context is often referred to as the permutation topology. This topology is
well studied, all results we need can for instance be found in [4]. A basis of this topology
is given by sets of the form {g ∈ Sym(X) | gxi = yi for 1 ≤ i ≤ k}, where k ∈ N and
x1, . . . xk, y1, . . . yk are elements of X. We say that a permutation group G ≤ Sym(X)
is closed, compact, or locally compact, if it has the respective property as a subset of
Sym(X) endowed with the permutation topology. It is known that a permutation group
G is compact, if and only if it is closed and all of its orbits are finite. Moreover, G is
locally compact if and only if it is closed and there is a finite set Y ⊆ X such that all
orbits of GY are finite. Note that every closed, subdegree finite permutation group is
locally compact because point stabilisers in such groups are compact, but the converse
is not true.

In what follows it will be useful to be able to interpret a group G as a permutation
group on different sets. The following observation tells us when this is possible.

Observation 3. Let G be a permutation group on X and Y ⊆ X such that GY = Y
and for every g ∈ G \ {id} there is some y ∈ Y such that gy ̸= y. Then G can be seen
as a permutation group on Y .

A k-colouring of X is a map c : X → C with |C| = k; throughout this short note we
will only consider the case k = 2 and let C = {0, 1}. We call a k-colouring c asymmetric
with respect to a subset H ⊆ Sym(X), if for every g ∈ H \ {id} there is some x ∈ X
such that c(x) ̸= c(gx). Note that we do not require H to be a subgroup.
The proof of Theorem 2 makes use of the following technical result, which is a rephras-

ing of [3, Theorem 1.2].
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Theorem 4. Let Ui, i ∈ N be disjoint finite sets. Let G be a permutation group on
X =

⋃
i∈N Ui whose action setwise fixes each Ui. If G(Ui+1) ≤ G(Ui) for every i ∈ N, then

there is an asymmetric 2-colouring of X.

This result is highly non-trivial; its proof depends on the classification of finite simple
groups and spans several pages.

3 Proof of the main result

Before proving our main result, we set up some notation which will be used throughout
the proof. We fix a countable set X and a locally compact permutation group G on X
with infinite motion. Moreover, we fix a finite subset X0 ⊆ X such that GX0 only has
finite orbits, and we let (Sn)n∈N be an enumeration of the orbits of GX0 . For each n ∈ N
we let

Gn =
⋂
i≥n

GSi .

Note that the set X \
⋃

i≥n Si is finite and thus Gn only has finite orbits. Moreover, Gn

is closed because the sets {g ∈ Sym(X) | gx = y} are open for all pairs (x, y) ∈ X2, and
the complement of Gn can be written as a union of Sym(X) \ G with countably many
such sets. Thus Gi is compact.
Let Xn = {gX0 | g ∈ Gn}, and let X∞ = {Y ⊆ X | |Y | = |X0|} \

⋃
i∈NXi. Finally,

for every Y ⊆ X with |Y | = |X0|, we let H(Y ) = {g ∈ G | gX0 = Y }. Note that H(Y )
is generally not a subgroup of G, but a coset of the stabiliser GX0 , or the empty set (in
case there is no g ∈ G which maps X0 to Y ).

Lemma 5. If g, h ∈ H(Y ), then gSn = hSn for every n ∈ N. In particular, if Y ∈ Xn,
then H(Y ) ⊆ Gn.

Proof. For the first part, note that otherwise g−1h ∈ GX0 would not fix Sn setwise,
contradicting the assumption that Sn is an orbit of GX0 . For the second part we observe
that Y ∈ Xn if and only if there is g ∈ G with gX0 = Y and gSi = Si for every i ≥ n.
It follows from the first part that hSi = Si for every h ∈ H(Y ) and every i ≥ n, and
therefore H(Y ) ⊆ Gn.

In what follows we will define a partition of the set X, and colour some parts of the
partition to ensure that the colouring is asymmetric with respect to Gn for n ∈ N, and
other parts to ensure that it is asymmetric with respect to H(Y ) for Y ∈ X∞. By the
above lemma this is enough to ensure that the resulting colouring is asymmetric with
respect to G.
The following lemma will be used to construct the parts that are used for the groups

Gn. It tells us that there are many different subsets of X for which Gn satisfies the
condition of Theorem 4.

Lemma 6. For each n ∈ N there is a sequence of pairwise disjoint, finite subsets Ui ⊆ X
such that the following properties are satisfied.
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1. Gn setwise fixes each Ui.

2. For every g ∈ Gn \ {id} there is some i ∈ N such that g non-trivially on Ui.

3. (Gn)(Ui+1) ≤ (Gn)(Ui) for all i ∈ N.

Proof. We define the sequence Ui by inductively defining values k(i) for i ∈ N and setting

Ui =
⋃

k(i)<j≤k(i+1)

Sj .

Note that this implies that Gn setwise fixes Ui because Ui is a union of orbits with
respect to Gn. Moreover, a non-trivial element g ∈ Gn which acts trivially on every
Ui would only permute elements of the finite set X \

⋃
j>k(1) Uj , and hence contradict

the assumption that G has infinite motion; in particular the first two properties will
automatically be satisfied by sets constructed as above.
We start our inductive construction by setting k(1) = n − 1 and k(2) = n, and thus

U1 = Sn. Now assume that k(i) has already been defined.
We claim that we can find some K ∈ N such that whenever g ∈ Gn acts non-trivially

on Ui, then it also acts non-trivially on at least one Sj for k(i) < j ≤ K. Assume for
a contradiction that this is not possible. Then for every K ∈ N there is some gj ∈ Gn

which acts non-trivially on Ui but pointwise fixes Sj for k(i) < j ≤ K. Since the set
B := X \

⋃
j≥n Sj is finite we may assume without loss of generality (by passing to a

subsequence) that all gj agree on B. The permutation g which agrees with the gj on B
and fixes all elements in X \ B is an accumulation point of the sequence gj . It follows
that g ∈ G because every gj is contained in G and G is closed. This is a contradicts the
infinite motion of G since g only moves finitely many elements of X. This finishes the
proof of the claim.
To complete our inductive construction, we set k(i+1) = K and note that this implies

that any g ∈ Gn which acts non-trivially on Ui also acts non-trivially on Ui+1, and hence
the sets Ui also satisfy the third property claimed in the lemma.

Lemma 7. Let Ui be as in Lemma 6, and let I ⊆ N be an infinite set. Then Gn and
UI =

⋃
i∈I Ui satisfy the conditions of Observation 3, and thus Gn can be seen as a

permutation group on UI . Moreover, there is an asymmetric 2-colouring of UI

Proof. Since Gn fixes each individual Ui, it clearly also fixes UI . Any g ∈ Gn \ {id}
acts non-trivially on some Ui, and thus also on each Uj for j > i. Since the set I is
infinite, this implies that g acts non-trivially on UI . For the ‘moreover’ part note that
the sequence Ui, i ∈ I satisfies the conditions of Theorem 4.

Proof of Theorem 2. For every n ∈ N we let Ui(n) be the sequence obtained from
Lemma 6 for Gn. Pick a sequence (sk)k∈N of natural numbers such that every n ∈ N
appears infinitely often in this sequence. Let (Yk)k∈N be an enumeration of X∞.
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Starting with I0(n) = ∅ for every n, we inductively define finite sets Ik(n) ⊆ N for
every n ∈ N and finite sets Zk ⊆ X as follows. Let

Wk =
⋃

i∈Ik−1(n)

Ui(n) ∪
⋃
i<k

Zi.

Let g ∈ HYk
. Since Yk ∈ X∞, there are infinitely many i such that gSi ̸= Si; note that

gSi does not depend on the particular choice of g by Lemma 5. We can pick some i(k)
such that gSi(k) ̸= Si(k) and Si(k) ∪ gSi(k) is disjoint from Wk. Set Zk = Si(k) ∪ gSi(k).
Next we define the sets Ik(n). For n ̸= sk we set Ik(n) = Ik−1(n). For n = sk, there

is some i ∈ N such that Ui(n) is disjoint from Wk ∪ Zk. We set Ik(n) = Ik−1(n) ∪ {i}.
Finally let I(n) =

⋃
k∈N Ik(n) and define a colouring of X as follows. For Zk we

colour Si(k) with colour 0 and Zk \ Si(k) with colour 1. Colour UI(n) =
⋃

i∈I(n) Ui by
an asymmetric 2-colouring with respect to Gn; this is possible by Lemma 7 because n
appears infinitely often in the sequence sk and thus I(n) is infinite. If there are any
remaining uncoloured elements of X, then colour them arbitrarily.

Assume now that there is some g ∈ G which preserves the resulting colouring. Observe
that g /∈ Gn because of the colouring on UI(n). Hence gX0 = Yk for some k ∈ N. But
then (by Lemma 5) g maps some element of Si(k) to an element of Zk \Si(k). The former
is coloured with colour 0, the latter is coloured with colour 1. This contradicts the
assumption that g was colour preserving.
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[14] Florian Lehner, Monika Piĺsniak, and Marcin Stawiski. Distinguishing infinite
graphs with bounded degrees. J. Graph Theory, 101(1):52–65, 2022.

[15] Alexander Russell and Ravi Sundaram. A note on the asymptotic and compu-
tational complexity of graph distinguishability. Electron. J. Comb., 5(1):research
paper 23, 7, 1998.

[16] Thomas W. Tucker. Distinguishing maps. Electron. J. Comb., 18(1):research paper
p50, 21, 2011.

6


